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Abstract

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of 
complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and 
nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly 
modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this study, we present the 
“multivariate MArginal ePIstasis Test” (mvMAPIT)—a multioutcome generalization of a recently proposed epistatic detection method 
which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. 
By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify 
the exact partners with which the variants interact—thus, potentially alleviating much of the statistical and computational burden asso
ciated with conventional explicit search-based methods. Our proposed mvMAPIT builds upon this strategy by taking advantage of cor
relation structure between traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a multivariate 
linear mixed model and develop a multitrait variance component estimation algorithm for efficient parameter inference and P-value 
computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome- 
wide association studies. With simulations, we illustrate the benefits of mvMAPIT over univariate (or single-trait) epistatic mapping strat
egies. We also apply mvMAPIT framework to protein sequence data from two broadly neutralizing anti-influenza antibodies and approxi
mately 2,000 heterogeneous stock of mice from the Wellcome Trust Centre for Human Genetics. The mvMAPIT R package can be 
downloaded at https://github.com/lcrawlab/mvMAPIT.
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Introduction
Genome-wide association (GWA) studies have contributed sub
stantially in the discovery of genetic markers associated with 
the architecture of disease phenotypes (Ripke et al. 2014; 

Ellinghaus et al. 2016; Fuchsberger et al. 2016; Visscher et al. 
2012, 2017; Loos 2020). Epistasis, commonly defined as the inter
action between genetic loci, has long been thought to play a key 
role in defining the genetic architecture underlying many complex 
traits and common diseases (Tao et al. 2012; Wei et al. 2012; Kirino 
et al. 2013; Chen et al. 2017; Gusareva et al. 2018). Indeed, previous 
studies have detected pervasive epistasis in many model organ
isms (Peripato et al. 2004; Tong et al. 2004; Brem et al. 2005; 
Deutschbauer and Davis 2005; Kroymann and Mitchell-Olds 

2005; Collins et al. 2006; Lehner et al. 2006; Onge et al. 2007; 
Wentzell et al. 2007; Shao et al. 2008; Flint and Mackay 2009; 

Gerke et al. 2009; Costanzo et al. 2010; He et al. 2010; Horn et al. 
2011; Jarvis and Cheverud 2011; Leamy et al. 2011; Pettersson 
et al. 2011; Szappanos et al. 2011; Gaertner et al. 2012; Bloom et al. 
2013; Chari and Dworkin 2013; Monnahan and Kelly 2015; 
Darnell et al. 2022). Substantial contributions of epistasis to 
phenotypic variance have been revealed for many complex traits 
(Huang and Mackay 2016; Crawford et al. 2018) and have been sug
gested to constitute an important component of evolution 
(Weinreich et al. 2006). Furthermore, modeling epistasis in add
ition to additive and dominant effects has been argued to increase 
phenotypic prediction accuracy in model organisms (Forsberg 
et al. 2017; Zhou et al. 2022) and facilitate genomic selection in 
breeding programs (Muñoz et al. 2014; Jiang and Reif 2015; 
Runcie et al. 2021). Despite a longstanding and currently ongoing 
debate about the contribution of nonadditive effects on the archi
tecture of human complex traits (Long and Langley 1999; Marchini 
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et al. 2005; Hill et al. 2008; Shao et al. 2008; Crow 2010; Zuk et al. 
2012; Hivert et al. 2021; Pazokitoroudi et al. 2021; Wainschtein 
et al. 2022), recent genetic mapping studies have also identified 
evidence of epistatic interactions that significantly contribute to 
quantitative traits and diseases (Brown et al. 2014; Fang et al. 
2019; van de Haar et al. 2019; Sheppard et al. 2021), and some 
have recently argued that gene-by-gene interactions can drive 
heterogeneity of causal variant effect sizes across diverse human 
populations (Patel et al. 2022). Importantly, epistasis is often pro
posed as a key contributor to missing heritability—the proportion 
of heritability not explained by the top associated variants in GWA 
studies (Wanstrat and Wakeland 2001; Eichler et al. 2010; 
Gusareva et al. 2014; Gusareva and Van Steen 2014; Gusareva 
et al. 2018).

Many statistical methods have been developed to facilitate the 
identification of epistasis in complex traits and diseases. 
Generally, these existing tools can be classified into two frame
works. In the first framework, explicit searches are performed to 
detect significant pairwise or higher order interactions. More spe
cifically, they use various strategies including exhaustive search 
(Purcell et al. 2007; Schüpbach et al. 2010; Ma et al. 2013), probabil
istic search (Prabhu and Pe’er 2012), or prioritization based on a 
predefined set of biological annotations of signaling pathways or 
genomic regulatory units (Lewinger et al. 2013; Guo et al. 2021). 
Different statistical paradigms have been implemented for these 
explicit search-based approaches including various frequentist 
tests (Purcell et al. 2007; Wan et al. 2010; Lishout et al. 2013), 
Bayesian inference (Zhang and Liu 2007; Tang et al. 2009; Zhang 
et al. 2011; Guo et al. 2019), and, most recently, detecting epistasis 
using machine learning (Chang et al. 2020; Fergus et al. 2020). 
Indeed, the explosion of large-scale genomic data sets has pro
vided the unique opportunity to integrate many of these techni
ques as standard statistical tools within GWA analyses. Many 
modern GWA applications have data sets that can include hun
dreds of thousands of individuals genotyped at millions of markers 
and phenotyped for thousands of traits (Nagai et al. 2017; Bycroft 
et al. 2018). Due to the potentially large space of genetic interac
tions (e.g. J(J − 1)/2 possible pairwise combinations for J variants 
in a study), explicit search-based methods often suffer from heavy 
computational burden. Even with various efficient computational 
improvements (Wan et al. 2010; Hemani et al. 2011; Prabhu and 
Pe’er 2012; Zhu and Fang 2018; Bayat et al. 2021), exploring over a 
large combinatorial domain remains a daunting task for many epi
static mapping studies. More importantly, because of a lack of a 
priori knowledge about epistatic loci, exploring all possible combi
nations of genetic variants can result in low statistical power after 
correcting for multiple hypothesis tests.

As a departure from the explicit search strategy, the second 
category of epistatic mapping methods attempts to address the 
previously mentioned challenges by detecting marginal epistasis. 
Specifically, instead of directly identifying individual pairwise or 
higher order interactions, these approaches focus on identifying 
variants that have a nonzero interaction effect with any other 
variant in the data set. For example, the “MArginal ePIstasis 
Test” (MAPIT) (Crawford et al. 2017) assesses each variant (in 
turn) and identifies candidate markers that are involved in epista
sis without the need to identify the exact partners with which the 
variants interact—thus, alleviating much of the statistical power 
concerns and heavy computational burdens associated with ex
plicit search-based methods. As a framework, the marginal epi
static strategy has been implemented in both linear mixed 
models and machine learning and has been used for case–control 
studies (Crawford and Zhou 2018), pathway enrichment 

applications (Turchin et al. 2020), heritability estimation (Darnell 
et al. 2022), and even extended to explore different sources of non
additive genetic variation (e.g. gene-by-environment interactions) 
(Moore et al. 2019; Kerin and Marchini 2020b). However, despite its 
wide adoption, this approach can still be underpowered for traits 
with low heritability or “polygenic” traits which are generated by 
many mutations of small effect (Crawford et al. 2017).

To date, both the explicit search and marginal epistasis detec
tion methodologies have only focused on analyzing one phenotype 
at a time. However, many previous genetic association studies 
have extensively shown that jointly modeling multiple pheno
types can often dramatically increase power for variant detection 
(Zhou and Stephens 2014). In this work, we present the “multivari
ate MArginal ePIstasis Test” (mvMAPIT)—a multioutcome general
ization of the MAPIT model which aims to take advantage of the 
relationship between traits to improve the identification of var
iants involved in epistasis. We formulate mvMAPIT as a multivari
ate linear mixed model (mvLMM) and extend a previously 
developed variance component estimation algorithm for efficient 
parameter inference and P-value computation in the multitrait 
setting (Zhou 2017). Together with reasonable model approxima
tions, our proposed approach is scalable to moderately sized 
GWA studies. With detailed simulations, we illustrate the benefits 
of mvMAPIT in terms of providing effective type I error control and 
compare its power to the univariate (or single-trait) mapping strat
egy used in the original MAPIT model. Here, part of our main con
tribution is the demonstration that the power in our proposed 
multivariate approach is driven by the correlations between the ef
fects of pairwise interactions on multiple traits. To close, we also 
apply the mvMAPIT framework to protein sequence data from a 
nearly combinatorially complete library of two broadly neutraliz
ing anti-influenza antibodies (Phillips et al. 2021) and to 15 quanti
tative hematology traits assayed in a heterogeneous stock of mice 
from Wellcome Trust Centre for Human Genetics (Valdar, Flint, 
et al. 2006; Valdar, Solberg, et al. 2006).

Materials and methods
The marginal epistasis test for single traits
The original motivation behind the original “MArginal ePIstasis 
Test” (MAPIT) was to identify variants that are involved in epista
sis while avoiding the need to explicitly conduct an exhaustive 
search over all possible pairwise interactions (Crawford et al. 
2017). In this section, we give a statistical overview of the univari
ate version of MAPIT where the objective is to search for marginal 
epistatic effects (i.e. the combined pairwise interaction effects be
tween a given variant and all other variants) that drive the genetic 
architecture of single traits. To begin, consider a GWA study with 
N individuals who have been genotyped for J single nucleotide 
polymorphisms (SNPs) encoded as {0, 1, 2} copies of a reference al
lele at each locus. In the MAPIT framework, we examine one SNP 
at a time (indexed by j) and consider the following linear model:

y = μ + xjβj +
􏽘

l≠j

xlβl +
􏽘

l≠j

(xj ◦ xl)αl + ε, ε ∼ N (0, τ2I), (1) 

where y is an N-dimensional vector of phenotypic states for a 
quantitative trait of interest measured in the N individuals; μ is 
an intercept term; X denotes an N × J matrix of genotypes with 
xj and xl representing N-dimensional vectors for the jth and lth 

SNPs; βj and βl are the respective additive effects; xj ◦ xl denotes 

the Hadamard (elementwise) product between two genotypic 
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vectors with corresponding interaction effect size αl; ε is a normal
ly distributed error term with mean zero and scale variance term 

τ2; and I denotes an N × N identity matrix. For convenience, we will 
assume that both the genotype matrix (columnwise) and trait of 
interest have been mean-centered and standardized. It is also 
worth noting that, while we limit the above to the task of identify
ing second-order (i.e. pairwise) interactions between genetic var
iants, extensions of MAPIT to higher order epistatic and 
gene-by-environmental effects have been shown to be straightfor
ward to implement (Moore et al. 2019; Kerin and Marchini 2020a, 
2020b; Zhu et al. 2022).

Variance component model formulation
Since many modern GWA applications present scenarios that 
would make equation (1) an underdetermined linear system (e.g. 
in modern biobank scale studies where genotyped markers J > N 
individuals), the MAPIT framework follows other standard ap
proaches (Yang et al. 2010; Wu et al. 2011; Zhou et al. 2013; 
Bulik-Sullivan et al. 2015; Crawford et al. 2017) to ensure model 
identifiability by assuming that the additive and interaction effect 
sizes follow univariate normal distributions where βl ∼ 
N (0, ω2/(J − 1)) and αl ∼ N (0, σ2/(J − 1)) for l ≠ j, respectively. This 
key normal assumption on the regression coefficients allows for 
equation (1) to be equivalently represented as the following vari
ance component model:

y = μ + xjβj + mj + zj + ε, ε ∼ N (0, τ2I), (2) 

where, in addition to previous notation, mj =
􏽐

l≠j xlβl is the com

bined additive effects from all variants other than the jth and zj = 
􏽐

l≠j (xj ◦ xl)αl denote the summation of all pairwise interaction ef

fects between the jth variant and all other variants. Under the 
variance component formulation in equation (2), the two random 

effects can also be expressed probabilistically as mj ∼ N (0, ω2Kj) 

where Kj = X−jX
⊺
−j/(J − 1) is an additive genetic relatedness matrix 

that is computed using all genotypes other than the jth SNP, and 

zj ∼ N (0, σ2Gj) where Gj = DjKjDj is a nonadditive relatedness ma

trix computed based on all pairwise interaction terms involving 
the jth SNP. Here, we let Dj = diag(xj) denote an N × N diagonal ma

trix with the jth genotype as its only nonzero elements. It is also 
important to note that both Kj and Gj change with every new jth 

marker that is tested.

Univariate point estimates
The key takeaway from the variance component model formu
lation in equation (2) is that σ2 represents a measure on the mar
ginal epistatic effect for each variant in the data. Therefore, in 
order to identify variants that have significant nonzero inter
action effects, we must assess the null hypothesis H0 : σ2 = 0 for 
each variant in the data set. The original MAPIT framework 
uses a computationally efficient method of moments algorithm 
called MQS (Zhou 2017) to estimate model parameters and to 
carry out calibrated statistical tests. Briefly, MQS produces point 
estimates that are mathematically identical to the 
Haseman-Elston (HE) cross-product regression (Lee et al. 2011; 
Zhou 2017; Zhu and Zhou 2020). To implement this algorithm, 
we first specify a two-dimensional matrix bj = [1, xj] with 1 being 
an N-dimensional vector of ones. Next, we then multiply both 
sides of equation (2) by a variant-specific projection Pj = I − 
bj(b

⊺
j bj)

−1b⊺
j which maps the model onto a column space that is 

orthogonal to both the intercept and the genotypic vector xj. 

This process simplifies the model specification of MAPIT in 
equation (2) to the following

y∗j = m∗j + z∗j + ε∗j , m∗j ∼ N (0, ω2K∗j ), z∗j ∼ N (0, σ2, G∗j ),

ε∗j ∼ N (0, τ2Pj),
(3) 

where we denote y∗j = Pjy; m∗j = Pjmj; K∗j = PjKjPj; z∗j = P∗j zj; 

G∗j = PjGjPj; and ε∗j = Pjε, respectively. The estimators for the vari

ance components in equation (3) are naturally based on the se
cond moment matching equations where, in expectation, we have

E[y∗⊺j Hyj] =
􏽘3

k=1

tr(HΣ jk)δk (4) 

with H being a symmetric and nonnegative definite matrix used to 
create weighted second moments, tr(†) denotes the trace of a ma
trix, and we use shorthand to represent [Σ j1; Σ j2; Σ j3] = [K∗j ; G∗j ; Pj] 

and δ = (ω2, σ2, τ2), respectively. In practice, we replace the left 

hand side of equation (4) with the realized value y∗⊺j Hyj. Note that 

many choices of H will yield unbiased estimates for (ω2, σ2, τ2), 
but different choices of H can affect statistical efficiency of the esti
mates. The set of moment matching equations in MQS is generated 
by using the covariance matrices corresponding to the variance 
components in place of the arbitrary H. This system of equations 
can then be rewritten as the following matrix multiplication

δ = S−1q, qk = y∗⊺j Σ jkyj, Srs = tr(Σ jrΣ js), (5) 

where q is a three-dimensional vector and S is a 3 × 3-dimensional 
matrix with k, r, s ∈ {1, 2, 3} being indices to represent the different 
variance components. If we subset just to compute an estimate for 
the marginal epistatic variance component (i.e. for the second in
dex), then equation (5) reduces to the following formula

􏽢σ2
j = y∗⊺j Hjy

∗
j , (6) 

where the variant-specific matrix Hj = (S−1)21K∗j + (S−1)22G∗j + 

(S−1)23Pj is now used in place of the arbitrary H.

Univariate hypothesis testing
In general, there are two ways to compute P-values in the MAPIT 
framework (Crawford et al. 2017). The first option uses a two-sided 
z-score or normal test. This particular test only requires the vari
ance component estimate 􏽢σ2

j from equation (6) and its correspond
ing standard error, which is approximated in the MQS approach as

V[􏽢σ2
j ] ≈ 2y∗⊺j H⊺

j VjHjy
∗
j , (7) 

where Vj =􏽢ω2
j K∗j +􏽢σ2

j G∗j +􏽢τ2
j Pj. The second option for deriving 

P-values in the MAPIT framework uses an exact test which is 
based on the fact that the MQS variance component estimate fol
lows a mixture of chi-square distributions under the null hypoth
esis. This is derived from both the normality assumption on y∗ and 

the quadratic form of the statistic in equation (6). Namely, 􏽢σ2
j ∼ 

􏽐N
i=1 λiχ2

1,i where χ2
1 are chi-square random variables with one de

gree of freedom and (λ1, . . . , λN) are the eigenvalues of the matrix

(􏽢ω2
0K∗j +􏽢τ2

0Pj)
1/2Hj(􏽢ω2

0K∗j +􏽢τ2
0Pj)

1/2 (8) 
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with (􏽢ω2
0,􏽢τ2

0) being the MQS estimates of (􏽢ω2,􏽢τ2) under the null hy

pothesis H0 : σ2 = 0. Several approaches have been proposed to ob
tain P-values under a mixture of chi-square distributions, 
including the Davies method (Davies 1980) (see Data and Software 
Availability). In practice, while the Davies method is an exact test 
and is expected to produce calibrated P-values, it can become com
putationally intensive since it scales cubically in the number of indi
viduals N. On the other hand, while the normal test only scales 
quadratically in N because of the standard error approximation in 
equation (7), it has been shown to lead to miscalibrated P-values 
for data sets with small sample sizes. As a result, MAPIT uses a hy
brid procedure which implements the normal test by default, and 
then applies the Davies method when the P-value from the normal 
test is below the nominal threshold of 0.05 (Crawford et al. 2017).

Derivation of the multivariate marginal epistasis 
test
The “multivariate MArginal ePIstasis Test” (mvMAPIT) is a multiout
come extension of the statistical framework MAPIT which aims to 
identify variants that are involved in epistatic interactions by lever
aging the covariance structure of nonadditive genetic variation that 
is shared between multiple traits. Once again, consider a GWA study 
with N individuals—however, this time, assume that each observa
tion has been measured for D different phenotypes. We will denote 
these sets of outcomes via a D × N-dimensional matrix Y = 
[y⊺

1, . . . , y⊺
D] with yd denoting an N-dimensional phenotypic vector 

for the dth trait. Given the jth variant of interest, we specify the 
mvMAPIT approach as the following multivariate linear mixed mod
el (mvLMM) (Zhou and Stephens 2014)

Y = U + βjx
⊺
j +

􏽘

l≠j

βlx
⊺
l +

􏽘

l≠j

αl(xj ◦ xl)
⊺ + E E ∼MN (0, Vε, I), (9) 

where, in addition to previous notation, U is a D × N-dimensional 
matrix which contains population-level intercepts that are the 
same for all individuals within each trait; βj and βl are 

D-dimensional vectors of additive effects for the jth and lth genotyp
ic vectors; αl is a D-dimensional vector of coefficients for the inter
action effects between the jth and lth SNPs spanning all traits; and 
E denotes an D × N matrix of residual errors that is assumed to fol
low a matrix-variate normal distribution with mean 0, within col
umn covariance Vε among the D traits, and independent within 
row covariance among the N individuals in the study.

Similar to the univariate setting, we need to make additional 
probabilistic assumptions to ensure model identifiability when 
equation (9) is an underdetermined linear system. To that end, let 
B = [βl]l≠j and A = [αl]l≠j denote the collection of coefficients not in
volving the jth variant of interest. Here, we will assume that these 
D × (J − 1) effect size matrices also follow matrix-variate normal dis
tributions where B ∼MN (0, Vβ, I) and A ∼MN (0, Vα, I), respect
ively. Note that this formulation is largely similar to the univariate 
case except with the additional property that the phenotypes being 
studied share some genetic covariance through Vβ and Vα. This as
sumption, coupled with the affine transformation property of ma
trix normal distributions, allows for us to equivalently represent 
the mvMAPIT model in equation (9) as the following multivariate 
variance component model:

Y + U + βjx
⊺
j + Mj + Zj + E, E ∼MN (0, Vε, I), (10) 

where Mj =
􏽐

l≠j βlx
⊺
l with Mj ∼MN (0, Vβ, Kj) represents the com

bined additive effects from all other variants across the D traits 

and Zj =
􏽐

l≠j αl(xj ◦ xl)
⊺ with Zj ∼MN (0, Vα, Gj) encodes all pair

wise interaction terms involving the jth SNP across the D traits. 
Here, the term Zj becomes the main focus of model inference.

As we will show below, mvMAPIT works by analyzing pairs of 
traits at a time; this allows the framework to be applied to any 
number of measured phenotypes. Analyzing more traits simply 
requires more computational resources both in terms of wall- 
clock time and computer memory. For each point estimate, 
mvMAPIT performs matrix operations that scale quadratically 
with sample size. The software also needs to store covariance ma
trices corresponding to the number of random effects in the mod
el. Both these added costs scale as D(D + 1)/2 for D traits. If one 
were to also consider higher order interactions, an additional re
source burden would come from requiring additional covariance 
matrices to be stored as well as projecting these covariance matri
ces onto a space that is orthogonal to the variant of interest and 
the population intercept. In the multivariate setting, the time 
complexity of the projection step scales on the order of DN2 with 
again N being the number of samples in the data.

Hypothesis testing in the mvMAPIT framework
The goal of the mvMAPIT framework still comes down to asses
sing the null hypothesis that tests for nonzero marginal epistat
ic effects. However, parameter estimation in mvLMMs can 
present substantial computational challenges. For example, 
one common way in the literature to rewrite the model specified 
in equation (10) is to vectorize (or stack) the columns of each 
matrix in the regression such that y = vec(Y), μ = vec(U), 
mj = vec(Mj), zj = vec(Zj), and ε = vec(E). Under this reformula
tion, we could simply follow the procedures in equations 
(3)–(8) to find significant variance components; but since 
V[mj] = Kj ⊗ Vβ and V[zj] = Gj ⊗ Vα are each ND × ND dimensions 
(via the Kronecker product ⊗), the periterative computation 
time for performing hypothesis testing on each jth SNP would 
now increase both with the number of individuals (N) and 
with the number of phenotypes (D). This could make model fit
ting infeasible for large biobanks even with only two traits. As 
an alternative, we present a combinatorial approach which first 
fits univariate MAPIT models and then combines the resulting 
P-values with those stemming from a “covariance statistic” 
which looks for shared marginal epistatic effects between all 
pairwise combinations of the D traits. Importantly, our com
binatorial approach does not make assumptions about the co
variance structure between traits, which would need to be 
known (or assumed) in the Kronecker formulation.

To implement the multivariate marginal epistasis test, we fol
low a similar strategy used in the univariate MAPIT model and 
right multiply equation (10) by a variant-specific projection Pj = 
I − bj(b

⊺
j bj)

−1b⊺
j which maps the model onto a column space that 

is orthogonal to the population-level intercepts and the genotyp
ic vector xj. This results in a simplified mvLMM of the following 
form:

Y∗j = M∗j + Z∗j + E∗j , E∗j ∼MN (0, Vε, Pj), (11) 

where, in addition to previous notation, Y∗j = YPj; M∗j = MjPj; 

Z∗j = ZjPj; and E∗j = EjPj, respectively. Probabilistically, this trans

formation assumes M∗j ∼MN (0, Vβ, K∗j ) with K∗j = PjKjPj; and Z∗j ∼ 

MN (0, Vα, G∗j ) with G∗j = PjGjPj. The joint analysis of multiple out

comes requires a generalization of the MQS algorithm to also in
clude moment estimates for the covariance components 
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between traits. Let y∗c and y∗d be the cth and dth rows of the ad

justed phenotypic matrix Y∗j , respectively. The general MQS esti

mates for the marginal epistatic effect is a generalization of 
equation (6) which is given in the following quadratic form:

􏽢σ2
j,(cd) = y∗⊺c Hjy

∗
d, (12) 

where Hj is as previously defined in the univariate MAPIT case 

and the trait-specific indices span between the c, d ∈ 1, . . . , D 
phenotypes. Here, when c = d, the above is exactly equal to equa
tion (6) and the variance component point estimate is computed 
using only one trait row in Y∗j . On the other hand, when c ≠ d, 

equation (12) takes on a bilinear form where E[y∗⊺c Hjy∗d] = 
tr(HjV j,(cd)) with V j,(cd) = V[y∗c , y∗d] being the covariance between 

any two traits of interest. The corresponding standard error of 
the bilinear covariance component can then be estimated via 
the following approximation (Searle 1979):

V[􏽢σ2
j,(cd)] ≈ y∗⊺c H⊺

j V j,(cd)Hjy
∗
d + y∗⊺c H⊺

j V j,(dd)Hjy
∗
c . (13) 

Once again, notice that when c = d, the term V j,(cd) = V j,(dd) and the 

above approximation in equation (13) is equal to equation (7).
The combinatorial hypothesis testing procedure that is used in 

mvMAPIT occurs in three key steps: 

1) In the first step, the model fits univariate models for all D 
traits of interests (i.e. using equations (3)–(8) from the 
MAPIT model or equivalently equations (12) and (13) with 
c = d). Here, we use the proposed hybrid testing approach 
where we first implement a normal test by default, and 
then apply the exact Davies method when the P-value 
from the normal test is below the nominal significance 
threshold of 0.05 (Crawford et al. 2017).

2) In the second step, we derive P-values for the covariance 
components (i.e. using equations (12) and (13) when c ≠ d) 
with a normal test. As we will show below, the P-values de
rived for the covariance components with the asymptotic 
normal approximation tend to be slightly deflated under 
the null hypothesis. While this leads to generally conserva
tive behavior with respect to type I error control, the down
side is that the test may result in reduced power under the 
alternative, especially after multiple correction for data 
sets with small sample sizes or for traits that have low gen
etic correlation. In these cases, deriving an exact test to ob
tain more calibrated P-values could be done; however, we do 
not explore this line of work here.

3) In the third and final step, mvMAPIT combines the P-values 
from the first two steps into an overall marginal epistatic 
P-value. Assume that we have T = 3 sets of P-values (two 
sets corresponding to marginal effects and one covariance 
set). The mvMAPIT software carries out the P-value combin
ing procedure in three different ways. The first assumes that 
each of the t = 1, . . . , T tests are (effectively) independent 
and implements Fisher’s method (Fisher 1925) which com
bines P-values into a single chi-square test statistic using 

the formula χ2
2T ∼ −2

􏽐T
t=1 log(pt), where pt denotes the 

P-value from the tth test. In Fisher’s method, the χ2 test stat
istic will be large when P-values tend to be small (i.e. when 
the null hypothesis is not true for every test). The second ap
proach assumes an unknown dependency structure be
tween each of the T tests and computes a harmonic mean 

(Wilson 2019a) P-value, where p̊ =
􏽐

t wt/
􏽐

t wt/pt. Here, 
􏽐

t wt = 1 are weights which we uniformly set to be wt = 
1/T for all P-values. The last approach implements the 
Cauchy combination test which produces analytic P-values 
for any arbitrary dependency structure (Liu and Xie 2020). 
Under this method, the Cauchy combination test statistic 
is defined as CCT =

􏽐
t wttan{(0.5 − pt)π}, where tan(†) is the 

tangent function and again we set wt = 1/T to be uniform 
for all P-values. The test statistic follows a standard 
Cauchy distribution CCT ∼ C(0, 1).

In practice, epistatic effects are assumed to make small contribu
tions to the overall broad-sense heritability of complex traits 
(Hivert et al. 2021; Pazokitoroudi et al. 2021; Wainschtein et al. 
2022). As a result, detecting associated variants that significantly 
contribute to nonadditive variation can be difficult. Intuitively, 
this combinatorial approach is meant to aggregate over the signal 
identified in both the marginal and covariance tests to improve 
power. In our results below, we show that Fisher’s method, the 
harmonic mean, and the Cauchy combination test approach are 
well calibrated under the null hypothesis (i.e. only additive effects 
for all traits analyzed) and increase the ability to detect marginal 
epistatic variants under the alternative in both simulations and 
real data.

Note on settings where mvMAPIT is designed to be most 
powered
The formulation of the general estimates in equations (12) and 
(13) highlight an important takeaway in that the mvMAPIT covari
ance statistic models epistatic pairs that together affect the archi
tecture of multiple traits. It is not meant to identify individual 
SNPs that are involved in epistasis for multiple traits while being 
a member of different interacting pairs. To clarify this, consider 
two simple scenarios in Fig. 1 where we have two phenotypes 
(y1 and y2) that are generated by a combination of four SNPs 
(x1, x2, x3, x4). In the first scenario, we say that (in expectation) 
E[y1] = x1β1 + (x2 ◦ x3)α1 and E[y2] = (x2 ◦ x3)α2 (Fig. 1a), while in 
the second scenario, E[y1] = x1β1 + (x2 ◦ x3)α1 and E[y2] = (x3 ◦

x4)α2 (Fig. 1b). The key to power in the mvMAPIT framework is 
that, in the first scenario, the interaction between x2 and x3 ap
pears in both traits with nonzero correlation between the effect 
sizes α1 and α2. This is in contrast to the second scenario where 
there is a common variant involved in epistasis but it is a member 
of two different sets of interactions that affect each trait. The 
mvMAPIT covariance statistic captures the situation illustrated 
in the first scenario (Fig. 1a) but not in the second (Fig. 1b).

Simulation study design
To test the utility of the mvMAPIT framework, we modified a fre
quently used simulation scheme (Crawford et al. 2017; Darnell 
et al. 2022) to generate collections of synthetic quantitative traits 
under multiple genetic architectures using real genotypes from 
chromosome 22 of the control samples in the Wellcome Trust 
Case Control Consortium (WTCCC) 1 study. After preprocessing, 
considering this particular group of individuals and SNPs resulted 
in a data set consisting of N = 2, 938 individuals and J = 5, 747 mar
kers. In these simulations, we randomly choose 1,000 causal SNPs 
to directly affect D = 2 phenotypes. We generate these synthetic 
traits via the following general multivariate linear model:

Y =
􏽘

g∈G
βgx⊺

g + AW⊺ + E, E ∼MN (0, I, I), (14) 
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where Y is an D × N matrix containing all the phenotypes; G repre
sents the set of 1,000 causal SNPs; xg is the genotype for the gth 

causal SNP encoded as 0, 1, or 2 copies of a reference allele; βg is 

a D-dimensional vector and represent the additive effect sizes 
for the gth SNP in the D traits; W is an N × M matrix which holds 
pairwise interactions (i.e. Hadamard products) between some 
subset of causal SNPs; A = [α1, . . . , αM] is a D × M matrix of inter
action effect sizes with αm being D-dimensional epistatic coeffi
cients for the mth interaction in the dth trait; and E is an D × N 
matrix of normally distributed environmental noise.

In these studies, we assume that the total phenotypic variances 
for both traits in Y are set to be 1. The additive and interaction ef
fect sizes for causal SNPs are randomly drawn from matrix nor
mal distributions where we control the correlation of effects 
between traits. This simplifies to us drawing coefficients as

βg ∼ N (0, Vβ), αm ∼ N (0, Vα), (15) 

where Vβ and Vα are D × D covariance matrices for additive effects 
and pairwise interactions between the phenotypes. Once these 
coefficients are sampled, we rescale them so that they explain a 

fixed proportion of the broad-sense heritability H2. Similarly, the 
environmental noise matrix is rescaled such that it explains 

1 − H2. When generating synthetic traits, we assume that the 
additive effects make up ρ% of the broad-sense heritability, while 
the pairwise interactions make up the remaining (1 − ρ)%. 
Alternatively, we say that the proportion of the heritability ex

plained by additivity is ρH2, while the proportion of phenotypic 

variance explained by pairwise interactions is (1 − ρ)H2. Setting ρ = 
1 represents the null model where the variation of a trait is driven 
by solely additive effects. Here, we use the same simulation strat
egy used in previous studies (Crawford et al. 2017; Darnell et al. 
2022) where we divide the causal variants into three groups 
where: 

• G1 is a small number of SNPs with both additive and epistatic 
effects;

• G2 is a larger number of SNPs with both additive and epistatic 
effects;

• G3 is a large number of SNPs with only additive effects.

Here, the epistatic causal SNPs interact between sets. All SNPs in 
G1 interact with all SNPs in the G2, but do not interact with variants 
in their own group (with the same rule applies to the second 

group). Again, each interaction between SNPs in the two groups 
has an epistatic effect size αd for the dth trait (see Fig. 1a). The cor
relation of epistatic effects between traits is determined via the 
correlation coefficient vα,12 (i.e. the off-diagonal elements of Vα). 
With this set up, one can think of the SNPs assigned to G1 as being 
the “hub nodes” in an interaction network. Note that we use this 
setup because it has been shown that the ability to detect two in
teracting variants depends on the proportion of phenotypic vari
ance that they marginally explain. For example, in our case, this 
means that power is expected to depend on V[Wα]/|G1| and 
V[Wα]/|G2| for groups 1 and 2, respectively, where |G| denotes 
the cardinality of the set. Given different parameters for the gen
erative model in equation (14), we simulate data mirroring a wide 
range of genetic architectures by varying the following 
parameters: 

• broad-sense heritability: H2 = 0.3 and 0.6;
• proportion of phenotypic variation that is explained by addi

tive effects: ρ = 0.5, 0.8, and 1;
• causal SNPs in each of the three groups: {|G1|, |G2|, |G3|} = 

{10, 10, 980} and {10, 20, 970};
• correlation between additive effects: vβ,12 = 0, 0.8, and 1;
• correlation between epistatic effects: vα,12 = 0 and 0.8.

All figures and tables show the mean performances (and standard 
errors) for each parameter combination across 100 simulated 
replicates.

Preprocessing of the heterogeneous stock of mice 
data set
As part of the analyses, this work makes use of GWA data from the 
Wellcome Trust Centre for Human Genetics (Valdar, Flint, et al. 
2006; Valdar, Solberg, et al. 2006) (http://mtweb.cs.ucl.ac.uk/ 
mus/www/mouse/index.shtml). The genotypes from this study 
were downloaded directly using the BGLR-R package (Perez and 
de los Campos 2014). This study contains N = 1, 814 heteroge
neous stock of mice from 85 families (all descending from eight in
bred progenitor strains) (Valdar, Flint, et al. 2006; Valdar, Solberg, 
et al. 2006), and 131 quantitative traits that are classified into 6 broad 
categories including behavior, diabetes, asthma, immunology, 
hematology, and biochemistry. Phenotypic measurements for these 
mice can be found freely available online to download (details can be 
found at http://mtweb.cs.ucl.ac.uk/mus/www/mouse/HS/index. 
shtml and https://github.com/lcrawlab/mvMAPIT). In the analyses 
below, we focused on 15 hematological phenotypes including: 

A B

Fig. 1. Schematic of the types of shared interactions modeled by the multivariate marginal epistasis test. Consider two simple, proof-of-concept 
simulation scenarios where two traits (y1, y2) are generated by a combination of four SNPs (x1, x2, x3, x4). a) First scenario where (in expectation) E[y1] = 
x1β1 + (x2 ◦ x3)α1 and E[y2] = (x2 ◦ x3)α2. b) Second scenario where E[y1] = x1β1 + (x2 ◦ x3)α1 and E[y2] = (x3 ◦ x4)α2. In both panels, variant x1 only has an 
additive effect β1 on trait y1. The mvMAPIT approach models correlations between the effects of a given interaction on multiple traits. Therefore, 
mvMAPIT is designed to identify SNPs involved in the first scenario where the interaction between variants x2 and x3 is shared between traits with 
nonzero correlated effect sizes α1 and α2. This is in contrast to the second case, where variant x3 is important to both traits but through distinct 
interactions with variants x2 and x4, respectively.
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atypical lymphocytes (ALY; Haem.ALYabs), basophils (BAS; 
Haem.BASabs), hematocrit (HCT; Haem.HCT), hemoglobin (HGB; 
Haem.HGB), large immature cells (LIC; Haem.LICabs), lympho
cytes (LYM; Haem.LYMabs), mean corpuscular hemoglobin 
(MCH; Haem.MCH), mean corpuscular volume (MCV; Haem.MCV), 
monocytes (MON; Haem.MONabs), mean platelet volume (MPV; 
Haem.MPV), neutrophils (NEU; Haem.NEUabs), plateletcrit (PCT; 
Haem.PCT), platelets (PLT; Haem.PLT), red blood cell count 
(RBC; Haem.RBC), red cell distribution width (RDW; Haem.RDW), 
and white blood cell count (WBC; Haem.WBC). All phenotypes 
were previously corrected for sex, age, body weight, season, 
year, and cage effects (Valdar, Flint, et al. 2006; Valdar, Solberg, 
et al. 2006). For individuals with missing genotypes, we imputed 
values by the mean genotype of that SNP in their corresponding 
family. Only polymorphic SNPs with minor allele frequency 
above 5% were kept for the analyses. This left a total of 
J = 10, 227 autosomal SNPs that were available for all mice.

Results
mvMAPIT produces calibrated P-values and 
conservative type I error rates
In this section, we make use of a previously described simulation 
scheme (Crawford et al. 2017; Darnell et al. 2022) in order to inves
tigate whether mvMAPIT and its combinatorial inference 

approach preserves the desired type I error rate and produces 
well-calibrated P-values under the null hypothesis. Here, we gen
erate synthetic phenotypes using real genotypes from the 22nd 
chromosome of the control samples in the WTCCC 1 study 
(Burton et al. 2007). Altogether, these data consist of N = 2, 938 in
dividuals and J = 5, 747 SNPs. Since the goal of mvMAPIT is to 
search for variants involved in epistatic interactions, we consider 
the null model to be satisfied when the phenotypic variation of the 
synthetic traits are solely driven by additive effects. Here, we first 
subsample the genotypes for N = 1, 000, 1,750, and 2,500 observa
tions. Next, we randomly select 1,000 causal SNPs and simulate 
continuous phenotypes by using the linear model Y = BX⊺ + E. 
The additive effect sizes for each causal SNP are drawn as β ∼ 
N (0, Vβ) across traits, and then we scale all terms to ensure a 
narrow-sense heritability of 60%. In these simulations, we vary 
the correlation of the additive genetic effects such that we have 
traits with independent additive effects (vβ,12 = 0), traits with high
ly correlated additive effects (vβ,12 = 0.8), and traits with perfectly 
correlated additive effects (vβ,12 = 1). We assess the calibration of 
the P-values that are produced by mvMAPIT during each of the 
three key steps in its combinatorial hypothesis testing procedure. 
That is, we evaluate (1) the P-values resulting from the univariate 
test on each trait, (2) the P-values derived from the covariance 
test, and (3) the final overall P-value that is computed by combin
ing the first two sets of P-values via Fisher’s method, the harmonic 

Fig. 2. The mvMAPIT framework using Fisher’s method produces well-calibrated P-values when traits are generated by only additive effects (sample size 
N = 2, 500 individuals). In these simulations, quantitative traits are simulated to have narrow-sense heritability h2 = 0.6 with an architecture made up of 
only additive genetic variation. Each row of QQ plots corresponds to a setting where the additive genetic effects for a causal SNP have different correlation 
structures across traits. In these simulations, we consider scenarios where we have independent traits (vβ = 0), highly correlated traits (vβ = 0.8), and 
perfectly correlated traits (vβ = 1). The first two columns show P-values resulting from the univariate MAPIT test on “trait #1” and “trait #2,” respectively. 
The third column depicts the “covariance” P-values which corresponds to assessing the pairwise interactions affecting both traits. Lastly, the fourth 
column shows the final “combined” P-value which combines the P-values from the first three columns using Fisher’s method. The 95% confidence 
interval for the null hypothesis of no marginal epistatic effects is also shown as the shaded band. Each plot combines results from 100 simulated 
replicates.
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mean, or the Cauchy combination procedure. Note that we expect 
the P-values from the first univariate test to be well-calibrated 
since it is equivalent to the MAPIT model. Figure 2 and 
Supplementary Figs. S1–S2 show the quantile–quantile (QQ) plots 
based on P-values combined using Fisher’s method, while 
Supplementary Figs. S3–S8 depict results while using the harmon
ic mean and the Cauchy combination test. Similarly, Table 1 and 
Supplementary Tables S1–S8 show the empirical type I error rates 
estimated for mvMAPIT at significance levels P = 0.05, 0.01, and 
0.001, respectively.

Overall, mvMAPIT conservatively controls type 1 error rate, 
both in the presence of nonzero correlation between additive ef
fects on the two traits and even with small sample sizes in the 
data. This result holds regardless of how P-values are combined 
in the model. The QQ plots of the P-values for all three compo
nents in mvMAPIT follow the expected uniform distribution for 
the univariate and combined analysis. Notably, because of the ap
proximations used to compute the standard error of the test stat
istic in equation (13), the multivariate extension of the MQS-based 
testing procedure in mvMAPIT can result in conservative P-values 
for the covariance components under the null.

Improved detection of epistatic variants using 
mvMAPIT in simulations
We test the power of mvMAPIT across different genetic trait archi
tectures via an extensive simulation study (see Materials and 
Methods). Once again, we generate synthetic phenotypes using 
real genotypes from the 22nd chromosome of the control samples 
in the WTCCC 1 study (Burton et al. 2007). As a reminder, these 

data consist of N = 2, 938 individuals and J = 5, 747 SNPs. In these 
simulations, we randomly choose 1,000 causal variants to directly 
affect the genetic architecture of D = 2 phenotypes. All causal 
SNPs are assumed to have a nonzero additive effect on both traits. 
Next, we randomly select a set of epistatic variants from the 1,000 
causal SNPs and divide them into two interacting groups (again 
see Materials and Methods). We will denote these groups #1 and 
#2 as G1 and G2, respectively, with |G| denoting the cardinality of 
the group. One may interpret the epistatic SNPs in G1 as being 
the “hub nodes” in an interaction network where each of these 
variants interact with all of the SNPs assigned to G2. We generate 
synthetic traits by using the multivariate linear model Y = BX⊺ + 
AW⊺ + E where, in addition to previous notation, W is matrix of in
teractions between the SNPs assigned to the groups G1 and G2. The 
additive and interaction coefficients for causal SNP effects across 
traits are drawn as β ∼ N (0, Vβ) and α ∼ N (0, Vα), respectively. As a 
final step, we scale all terms to ensure that all genetic effects ex
plain a fixed proportion of the total phenotypic variation. We as
sume a wide range of simulation scenarios by varying the 
following parameters: 

• broad-sense heritability: H2 = 0.3 and 0.6;
• proportion of phenotypic variation that is explained by addi

tive effects: ρ = 0.5 and 0.8;
• number of causal SNPs assigned to the interaction groups: 

{|G1|, |G2|} = {10, 10} and {10, 20};
• correlation between epistatic effects: vα,12 = 0 and 0.8.

All results presented in this section are based on 100 different si
mulated phenotypes for each parameter combination.

The main point of these simulations is to highlight the potential 
power gained from taking a multivariate approach to epistatic de
tection. To that end, in each of the simulation scenarios, we assess 
(i) the power of running the univariate MAPIT model on each trait 
individually, (ii) the marginal epistatic effects detected by the co
variance test, (iii) the power from the overall association identified 
by mvMAPIT, and (iv) a baseline meta-analytic approach which 
combines only the P-values from the univariate MAPIT models 
on each trait. We will hereafter refer to that last model as 
“meta-MAPIT” for simplicity. Figure 3 and Supplementary Figs. 
S9–S11 show the empirical power of the univariate MAPIT model, 
the covariance test, mvMAPIT, and meta-MAPIT while using 
Fisher’s method at various multiple hypothesis testing correction 
thresholds. Supplementary Figs. S12–S19 depict the same infor
mation but with mvMAPIT and meta-MAPIT using the harmonic 
mean and Cauchy combination test to combine P-values. We 
also compare each method’s ability to rank true positives over 
false positives via receiver operating characteristic (ROC) and 
precision-recall curves (Fig. 4 and Supplementary Figs. S20–S24). 
There are several key takeaways from these simulation results. 
Overall, the ability of the univariate MAPIT framework to detect 
group #1 and #2 causal variants depends on the proportion of non
additive phenotypic variation that they explain. This has been 
shown in previous demonstrations of the method (Crawford 
et al. 2017). For example, when there are |G2| = 10 causal SNPs 
in group #2, each variant in the set is expected to explain (1 − 
ρ)H2/10% of the genetic variance. As we increase that number of 
causal SNPs in group #2 to |G2| = 20, this proportion of variance ex
plained by SNPs in group #2 will decrease which will make it more 
difficult to prioritize markers involved in interactions. 
Importantly, it is worth noting that the single-phenotypic test in 
MAPIT depends on the total interaction effects, rather than indi
vidual pairwise effects or the number of interacting pairs. An 

Table 1. The mvMAPIT framework using Fisher’s method 
preserves type I error rates under the null model when traits are 
generated by only additive effects (sample size N = 2, 500 
individuals).

Add. effect 
corr. P = 0.05 P = 0.01 P = 0.001

Univariate vβ = 0.0 0.030 
(1 × 10−2)

0.009 
(2 × 10−3)

0.0010 
(9 × 10−4)

vβ = 0.8 0.030 
(1 × 10−2)

0.009 
(2 × 10−3)

0.0010 
(7 × 10−4)

vβ = 1.0 0.030 
(1 × 10−2)

0.009 
(3 × 10−3)

0.0009 
(7 × 10−4)

Covariance vβ = 0.0 0.040 
(1 × 10−2)

0.006 
(2 × 10−3)

0.0003 
(3 × 10−4)

vβ = 0.8 0.040 
(1 × 10−2)

0.007 
(2 × 10−3)

0.0004 
(5 × 10−4)

vβ = 1.0 0.040 
(1 × 10−2)

0.006 
(2 × 10−3)

0.0003 
(4 × 10−4)

Combined vβ = 0.0 0.040 
(1 × 10−2)

0.006 
(2 × 10−3)

0.0003 
(3 × 10−4)

vβ = 0.8 0.040 
(1 × 10−2)

0.007 
(2 × 10−3)

0.0004 
(5 × 10−4)

vβ = 1.0 0.040 
(1 × 10−2)

0.006 
(2 × 10−3)

0.0003 
(4 × 10−4)

In these simulations, quantitative traits are simulated to have narrow-sense 
heritability h2 = 0.6 with an architecture made up of only additive genetic 
variation. Each row corresponds to a setting where the additive genetic effects 
for a causal SNP have different correlation structures across traits. In these 
simulations, we consider scenarios where we have traits with independent 
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), 
and traits with perfectly correlated additive effects (vβ = 1). We assess the 
calibration of the P-values that are produced by mvMAPIT during each of the 
three key steps in its combinatorial hypothesis testing procedure (see Materials 
and Methods). We show type I error rates resulting from P-values taken from the 
“univariate” test on each trait independently, the “covariance” P-values which 
corresponds to assessing the pairwise interactions affecting both traits, and the 
final “combined” P-value. Results are summarized over 100 simulated 
replicates. Values in the parentheses are the standard deviations across 
replicates.
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A

B

C

Fig. 3. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10) and group #2 (10) epistatic variants across complex traits with moderate 
broad-sense heritability. In these simulations, both quantitative traits are simulated to have broad-sense heritability H2 = 0.6 with architectures made up 
of both additive and epistatic effects. The parameter ρ = {0.5, 0.8} is used to determine the portion of broad-sense heritability contributed by additive 
effects. Each column corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures across traits. In these 
simulations, we consider scenarios where we have traits with independent epistatic effects (vα = 0) and traits with highly correlated epistatic effects 
(vα = 0.8). This plot shows the empirical power of mvMAPIT at significance levels a) P = 5 × 10−2, b) P = 5 × 10−4, and c) P = 1 × 10−5, respectively. Results for 
the group #1 and #2 causal markers are shown side-by-side, respectively. For comparison, the “trait #1” and “trait #2” bars correspond to the univariate 
MAPIT model, the “cov” bars corresponds to power contributed by the covariance test, and “comb” details power from the overall association identified by 
mvMAPIT in the combination approach. Lastly, the “meta” bars shows power from the association identified by combining only the P-values of the two 
univariate cases “trait #1” and “trait #2”. Results are based on 100 simulations per parameter combination and the horizontal bars represent standard 
errors.
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example of this can be seen by comparing Fig. 3a to 
Supplementary Fig. S9a where the ability to group #1 variants is 
independent of the number of variants in group #2.

Intuitively, the joint modeling approach of mvMAPIT provides a 
viable strategy for identifying SNPs contributing to nonadditive 
variation that would have otherwise gone undetected by univariate 

methods. The scenario where mvMAPIT shows significant gains 
over the univariate MAPIT modeling approach is when there is non
zero correlation between the effects of the epistatic interactions 
shared between traits (e.g. when vα,12 = 0.8). The sensitivity of the 
covariance hypothesis test depends on the strength of this correl
ation which can help increase power when combining over 

A B

Fig. 4. Receiver operating characteristic (ROC) curves comparing the ability of mvMAPIT with Fisher’s method to the univariate MAPIT model in detecting 
group #1 (10) and group #2 (10) epistatic variants across complex traits. In panel a) both traits have broad-sense heritability H2 = 0.6, while in panel b) one 
of traits has broad-sense heritability H2 = 0.6 and the other has heritability H2 = 0.3. Across the rows, the parameter ρ = {0.5, 0.8} is used to determine the 
portion of broad-sense heritability contributed by additive effects. Each column corresponds to settings where the epistatic effects across traits are 
independent (vα = 0) or highly correlated (vα = 0.8). For comparison, the “trait #1” and “trait #2” dashed lines correspond to the univariate MAPIT model. 
The “covariance” solid line corresponds to power contributed by the covariance test. The “combined” line shows power from the overall association 
identified by mvMAPIT in the multivariate approach. Lastly, the “meta” dotted line shows power from the association identified by combining only the 
P-values of the two univariate cases “trait #1” and “trait #2”. Note that the upper limit of the x-axis (i.e. false positive rate) has been truncated at 0.05. All 
results are based on 100 simulated replicates.
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P-values in the final step of mvMAPIT. This becomes increasingly 
relevant in the low heritability cases. When there is no correlation 
of interaction effects shared between pairs of traits, combining 
only the univariate P-values in the meta-MAPIT model performs 
equally well as mvMAPIT which includes contributions from the co
variance statistic. Figure 4 and Supplementary Figs. S20–S24 dem
onstrate that the sensitivity of the covariance statistic is 
comparable to the univariate statistic for highly correlated epistatic 
effects (vα = 0.8) despite genetic variance being predominantly ex
plained by additivity (ρ = 0.8). In this case, the multivariate ap
proach performs better than simply doing a meta-analysis on only 
the univariate P-values. In Fig. 4, Supplementary Figs. S10, S11, 
S14, S15, and S18–S24, we simulated synthetic traits such that one 
has a moderate broad-sense heritability H2 = 0.6 and the other 
has heritability H2 = 0.3. In these scenarios, detecting variants in
volved in interactions increased for the trait with low heritability. 
In particular, the covariance component analysis is shown to play 
an important role in this improved detection (e.g. see Fig. 4b).

Synergistic epistasis in binding affinity 
landscapes for neutralizing antibodies
We apply the mvMAPIT framework to protein sequence data from 
Phillips et al. (2021) who generated a nearly combinatorially com
plete library for two broadly neutralizing anti-influenza antibodies 
(bnAbs), CR6261, and CR9114. This data set includes almost all com
binations of one-off mutations that distinguish between germline 
and somatic sequences which total to J = 11 heavy-chain mutations 
for CR6261 and J = 16 heavy-chain mutations for CR9114. 
Theoretically, a combinatorially complete data set for 11 and 16 mu
tations will have 2,048 and 65,536 samples, respectively. In this par
ticular study, we have have access to N = 1, 812 complete 
observations for CR6261 and N = 65, 091 complete measurements 
for CR9114. For our analysis with mvMAPIT, residue sequence infor
mation was encoded as a binary matrix with the germline sequence 
residues marked by zeros and the somatic mutations represented as 
ones. As quantitative traits, Phillips et al. (2021) measure the binding 
affinity of the two antibodies to different influenza strains. Here, we 
assess the contribution of epistatic effects when binding to H1 and 
H9 for CR6261, and H1 and H3 for CR9114.

Once again, we report results after running mvMAPIT with 
Fisher’s method, the harmonic mean, and the Cauchy combination 
approach (Supplementary Table S9). Figure 5a, Supplementary Figs. 
S25a and S26a show Manhattan plots for P-values corresponding to 
the trait-specific marginal epistatic tests (i.e. the univariate MAPIT 
model), the covariance test, and the mvMAPIT approach. Here, 
green colored dots are positions that have significant marginal epi
static effects beyond a Bonferroni corrected threshold for multiple 
testing (P = 0.05/11 = 4.55 × 10−3 for CR6261 and P = 0.05/16 = 
3.13 × 10−3 for CR9114, respectively). Interestingly, while the uni
variate MAPIT approach was able to identify significant marginal 
epistatic effects for CR6261, it lacked the power to identify signifi
cant positions driving nonadditive variation in binding affinity for 
CR9114. Overall, the combined trait approach in mvMAPIT revealed 
marginal epistatic effects for positions 29, 35, 82, 83, and 84 in 
CR6261, and positions 30, 36, 57, 64, 65, 66, 82, and 83 for CR9114. 
Most notably, these same positions were also identified as contribut
ing to pairwise epistasis by Phillips et al. (2021). In the original study, 
the authors first ran an exhaustive search to statistically detect sig
nificant interactions and then conducted downstream analyses to 
find that these positions are likely responsible for the antibodies 
binding to the influenza surface protein hemagglutinin. The regres
sion coefficients from the exhaustive search, as reported by Phillips 
et al. (2021), are illustrated in panels b and c of Fig. 5, Supplementary 

Figs. S25 and S26. Panel b illustrates interaction coefficients when 
assessing binding of CR6261with H1 (upper right triangle) and H9 

(lower left triangle). Panel c shows the same information when as
sessing binding of CR9114 with H1 (upper right triangle) and H9 (low
er left triangle). Our results show that mvMAPIT identifies all 
required mutations in these systems as well as most positions in
volved in at least one epistatic pair.

Joint modeling of hematology traits yields 
epistatic signal in stock of mice
In this section, we apply mvMAPIT to individual-level genotypes 
and 15 hematology traits in a heterogeneous stock of mice data 
set from the Wellcome Trust Centre for Human Genetics 
(Valdar, Flint, et al. 2006; Valdar, Solberg, et al. 2006). This collec
tion of data contains approximately N = 2, 000 individuals de
pending on the phenotype (see Materials and Methods), and each 
mouse has been genotyped at J = 10, 346 SNPs. As noted by previ
ous studies, these data represent a realistic mixture of the simu
lation scenarios we detailed in the previous sections (i.e. varying 
different values of the parameter ρ). Specifically, this stock of 
mice is known to be genetically related with population structure 
and the genetic architectures of these particular traits have been 
shown to have different levels of broad-sense heritability with 
varying contributions from nonadditive genetic effects.

For each pairwise trait analysis, we provide a summary table 
which lists the combined P-values after running mvMAPIT with 
Fisher’s method and the harmonic mean (Supplementary 
Table S10). We also include results corresponding to the univariate 
MAPIT model and the covariance test for comparison. Overall, the 
single-trait marginal epistatic test only identifies significant variants 
for the large immature cells (LIC) after Bonferroni correction 
(P = 4.83 × 10−6). A complete picture of this can be seen in 
Supplementary Figs. S27–S29 which depict Manhattan plots of our 
genome-wide interaction study for all combinations of trait pairs. 
Here, we can see that most of the signal in the combined P-values 
from mvMAPIT likely stems from the covariance component portion 
of the model. This hypothesis holds true for the joint pairwise ana
lysis of (i) hematocrit (HCT) and hemoglobin (HGB) and (ii) mean cor
puscular hemoglobin (MCH) and mean corpuscular volume (MCV) 
(e.g. see the third and fourth rows of Fig. 6a, Supplementary Figs. 
S30a and S31a). One explanation for observing more signal in the co
variance components over the univariate test could be derived from 
the traits having low heritability but high correlation between epi
static interaction effects. Recall that our simulation studies showed 
that the sensitivity of the covariance statistic increased for these 
cases. As a direct comparison, Fig. 6b, Supplementary Figs. S30b, 
S31b, and S32–S34 give examples of analyses that do not identify sig
nificant marginal epistatic effects even after using the mvMAPIT ap
proach. This further supports the claim that the signal provided by 
the covariance statistic is not likely due to inflation.

Notably, the nonadditive signal identified by the covariance 
test is not totally dependent on the empirical correlation between 
traits (see Supplementary Fig. S35). Instead, as previously shown 
in our simulation study, the power of mvMAPIT over the univari
ate approach occurs when there is correlation between the effects 
of epistatic interactions shared between two traits. Importantly, 
many of the candidate SNPs selected by the mvMAPIT framework 
have been previously discovered by past publications as having 
some functional nonlinear relationship with the traits of interest. 
For example, the multivariate analysis with traits MCH and 
MCV show a significant SNP rs4173870 (P = 4.89 × 10−10) in the 
gene hematopoietic cell-specific Lyn substrate 1 (Hcls1) on 
chromosome 16 which has been shown to play a role in 
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differentiation of erythrocytes (Castro-Ochoa et al. 2019). 
Similarly, the joint analysis of HGB and HCT shows hits in mul
tiple coding regions. One example here are the SNPs rs3692165 
(P = 1.82 × 10−6) and rs13482117 (P = 8.94 × 10−7) in the gene cal
cium voltage-gated channel auxiliary subunit alpha2delta 3 
(Cacna2d3) on chromosome 14, which has been associated with 
decreased circulating glucose levels (IMPC 2014), and SNP 
rs3724260 (P = 4.58 × 10−6) in the gene Dicer1 on chromosome 12 
which has been annotated for anemia both in humans and mice 
(Raaijmakers et al. 2010).

Table 2 lists a select subset of SNPs in coding regions of genes 
that have been associated with phenotypes related to the 

hematopoietic system, immune system, or homeostasis and me
tabolism. Each of these are significant (after correction for mul
tiple hypothesis testing) in the mvMAPIT analysis of related 
hematology traits. Some of these phenotypes have been reported 
as having large broad-sense heritability, which improves the abil
ity of mvMAPIT to detect the signal. For example, the genes Arf2 
and Cacna2d3 are associated with phenotypes related to glucose 
homeostasis, which has been reported to have a large heritable 
component (estimated H2 = 0.3 for insulin sensitivity, Norris and 
Rich (2012)). Similarly, the genes App and Pex1 are associated 
with thrombosis where (an estimated) more than half of pheno
typic variation has been attributed to genetic effects (estimated 

A B

C

Fig. 5. Applying mvMAPIT with Fisher’s method to broadly neutralizing antibodies recovers heavy-chain mutations known to be involved in epistatic 
interactions that affect binding against two influenza strains. These results are based on protein sequence data from Phillips et al. (2021) who generated a 
nearly combinatorially complete library for two broadly neutralizing anti-influenza antibodies (bnAbs), CR6261 and CR9114. For each antibody, we assess 
binding affinity to different influenza strains. For CR6261, traits #1 and #2 are binding measurements to the antigens H1 and H9, while for CR9114, we 
assess the same measurement for H1 and H3. a) Manhattan plots for the different sets of P-values computed during the mvMAPIT analysis. The 
dashed horizontal lines indicate a chain-wide Bonferroni corrected significance threshold (P = 4.55 × 10−3 for CR6261 and P = 3.13 × 10−3 for CR9114, 
respectively). The dots above the dashed horizontal lines are positions that have significant marginal epistatic effects after multiple correction. b, c) 
Exhaustive search results originally reported by Phillips et al. (2021). The dots next to the mutation labels on the axes are the residues that are significant 
in the multivariate MAPIT analysis and correspond to panel a). The shaded regions in panel b) are the regression coefficients for pairwise interactions 
between positions when assessing binding of CR6261with H1 (upper right triangle) and H9 (lower left triangle). Similarly, panel c) shows the same 
information when assessing binding of CR9114 with H1 (upper right triangle) and H3 (lower left triangle). Required mutations (indicated by R) are left out 
of the analysis (Phillips et al. 2021).
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H2 ≥ 0.6 for susceptibility to common thrombosis, Souto et al. 
2000).

As a final analysis, Supplementary Figs. S36 and 37 illustrate 
the possibility of using the mvMAPIT framework to jointly analyze 
any number of traits. These show both Manhattan plots and QQ 
plots corresponding to the application of mvMAPIT to a subset 
or all of the 15 hematology traits measured in the heterogeneous 
stock of mice data set. In this analysis, all univariate variance and 
all pairwise covariance test statistics are combined. 
Supplementary Figure S36 shows an inflation of smaller 
P-values that is reduced by excluding traits measuring abnormal 
lymphocytes and large immature cells (i.e. those traits that 
show strong signal in for the univariate analyses; see diagonal pa
nels in Supplementary Figs. S27–S29). Results where these two 
phenotypes are excluded can be found in Supplementary Fig. 
S37 for direct comparison.

Discussion
The marginal epistatic testing strategy offers an alternative to 
traditional epistatic mapping methods by seeking to identify var
iants that exhibit nonzero interaction effects with any other vari
ant in the data (Crawford et al. 2017; Crawford and Zhou 2018; 
Turchin et al. 2020). This framework has been shown to drastically 
reduce the number of statistical tests needed to uncover evidence 
of significant nonadditive variation in complex traits and, as a re
sult, alleviates much of the empirical power concerns and heavy 

computational burden associated with explicit search-based 
methods. Still, models testing for marginal epistasis can be under
powered when applied to traits with low heritability or to “poly
genic” traits where the interactions between mutations have 
small effect sizes (Crawford et al. 2017). In this work, we present 
the “multivariate MArginal ePIstasis Test” (mvMAPIT), a multiout
come extension of the univariate marginal epistatic framework 
(Fig. 1). Theoretically, we formulate mvMAPIT as a multivariate 
linear mixed model (mvLMM) where its ability to jointly analyze 
any number of traits relies on a generalized “variance–covariance” 
component estimation algorithm (Zhou 2017). Through extensive 
simulations, we show that mvMAPIT preserves type I error rates 
and produces well-calibrated P-values under the null model 
when traits are generated only by additive effects (Fig. 2 and 
Supplementary Figs. S1–S8, and Table 1 and Supplementary 
Tables S1–S8). In these simulation studies, we also show that 
mvMAPIT improves upon the identification of epistatic variants 
over the univariate test when there is correlation between the ef
fects of genetic interactions shared between multiple traits (Figs. 
3, 4, and Supplementary Figs. S9–S24). By analyzing two real 
data sets, we demonstrated the ability of mvMAPIT to recover 
heavy-chain mutations known to be involved in epistatic interac
tions that affect binding against two influenza strains (Phillips 
et al. 2021) (Fig. 5, Supplementary Figs. S25 and S26, and 
Table S9) as well as to identify hematology trait relevant epistatic 
SNPs in heterogeneous stock of mice (Valdar, Flint, et al. 2006; 
Valdar, Solberg, et al. 2006) that have also been detected in 

A B

Fig. 6. Manhattan plots of a genome-wide interaction study for two pairs of hematology traits in the heterogeneous stock of mice data set from the 
Wellcome Trust Centre for Human Genetics (Valdar, Flint, et al. 2006; Valdar, Solberg, et al. 2006) using mvMAPIT with Fisher’s method. Panel a) depicts 
results for trait pairs hematocrit (HCT) and hemoglobin (HGB) in the left column and mean corpuscular hemoglobin (MCH) and mean corpuscular volume 
(MCV) in the right column. Panel b) depicts results for trait pairs lymphocytes (LYM) and platelets (PLT) in the left column and red blood cell count (RBC) 
and neutrophils (NEU) in the right column. Here, we depict the P-values computed during each step of the mvMAPIT modeling pipeline. The dashed 
horizontal lines indicate a genome-wide Bonferroni corrected significance threshold (P = 4.83 × 10−6). The dots above the dashed horizontal lines are SNPs 
that have significant marginal epistatic effects after multiple test correction. Significant SNPs were mapped to the closest neighboring genes using the 
Mouse Genome Informatics database (http://www.informatics.jax.org) (Blake et al. 2020; Smith and Eppig 2009).
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previous publications and functional validation studies (Fig. 6 and 
Supplementary Figs. S27–S37, and Table 2 and Supplementary 
Table S10). Lastly, we have made mvMAPIT an open-source R soft
ware package with documentation to facilitate its use by the 
greater scientific community.

We want to highlight an important caveat for mapping epistasis 
in real data: in genome-wide association studies, statistically in
ferred interactions can sometimes be explained by same-locus 
additive effects (Wood et al. 2014). This means that conclusions 
made by mvMAPIT, as well as any other computational method 
aimed at the detection of epistasis, could be confounded by additive 
effects of untyped or uncontrolled variants in the same region. 
Notably, it is difficult to control for the additive fixed effects of all 
variants in the same locus (Crawford et al. 2017). This caveat needs 
to be considered to guard against overinterpreting the results of 
mvMAPIT. The results that we present in this work (e.g. in the study 
of hematology trait architecture within the heterogeneous stock of 
mice) should be understood as an illustration of how multivariate 
regression frameworks can be leveraged as powerful hypothesis 
generating tools that can help towards resolving the true contribu
tion of genetic effects to phenotypic variation in complex traits.

The current implementation of the mvMAPIT framework offers 
many directions for future development and applications. First, 
like other marginal epistatic mapping methods, mvMAPIT is un
able to directly identify detailed interaction pairs despite being 
able to identify SNPs that are involved in epistasis. As shown 
through our simulations and real data analyses, being able to 
identify SNPs involved in epistasis allows us to come up with an 
initial (likely) set of variants that are worth further exploration, 
and thus represents an important first step towards identifying 
and understanding detailed epistatic associations. In previous 
studies (Zhang et al. 2010; Lewinger et al. 2013; Crawford et al. 
2017; Pecanka and Jonker 2021), two-step ad hoc procedures 
have been suggested where, in our case, we would first run 
mvMAPIT and then focus on significant SNPs from the first step 
to further test all of the pairwise interactions among them in order 
to identify specific epistatic interaction pairs. While this approach 
has been shown to be effective in univariate (single-trait) ana
lyses, this two-step procedure is still ad hoc in nature and could 
miss important epistatic associations. Exploring robust ways uni
fy these two steps in a joint fashion would be an interesting area 
for future research. Second, in its current implementation, 
mvMAPIT can be computationally expensive for data sets with 
large sample sizes (e.g. hundreds of thousands of individuals in 
a biobank scale study). In this study, we develop a “variance–com
ponent component” extension to the MQS algorithm to estimate 
parameters in the mvMAPIT model. Theoretically, MQS is based 
on the method of moments and produces estimates that are 
mathematically identical to the Haseman-Elston (HE) cross- 
product regression (Lee et al. 2011; Zhou 2017; Zhu and Zhou 
2020). In practice, MQS is not only computationally more efficient 
than HE regression but also provides a simple, analytic estimation 
form that allows for exact P-value computation—thus alleviating 
the need for jackknife re-sampling procedures (Golan et al. 2014) 
that both are computationally expensive and rely on assumptions 
of independence across individuals in the data (Churchill and 
Doerge 2008). Exploring different ways to reliably fit large-scale 
mvLMMs with multiple random effects is a consideration for fu
ture work. For example, as an alternative, recent studies have pro
posed randomized multicomponent versions of HE regression for 
heritability estimation which scale up to data sets with millions of 
individuals and variants, respectively (Wu and Sankararaman 
2018; Kerin and Marchini 2020a; Pazokitoroudi et al. 2020). It would 

be interesting to develop a well-calibrated hypothesis test within 
the randomized HE regression setting so that it may be implemen
ted within the mvMAPIT software for association mapping.

In the future, we plan to expand the mvMAPIT framework to 
also identify individual variants contributing other sources of 
nonadditive genetic variation such as gene-by-environment 
(G×E) or gene-by-sex (G×Sex) interactions. We can do this by ma
nipulating the marginal epistatic covariance matrix in equation 
(10) to encode how loci interact with one or more environmental 
instruments (Moore et al. 2019; Kerin and Marchini 2020a, 2020b; 
Zhu et al. 2022). Lastly, we have focused here on applying 
mvMAPIT to simple quantitative traits. However, there are 
many important traits with significant nonadditive genetic com
ponents in plants, animals, and humans that cannot be easily re
duced to simple scalar values. Examples include longitudinal 
traits such as growth curves (Campbell et al. 2018), metabolic 
traits such as the relative concentrations of different families of 
metabolites (Chan et al. 2011), and morphological traits such as 
shape or color (Demmings et al. 2019). Indeed, each of these traits 
can be decomposed into vectors of interrelated components, but 
treating these components as independent phenotypes within ex
isting univariate epistatic mapping tools would be inefficient be
cause of their statistical dependence. As an alternative, the 
mvMAPIT framework can be used to make joint inferences about 
epistasis across any number of correlated phenotypic compo
nents—which, in the case of longitudinal studies for example 
(Couto Alves et al. 2019; Wu et al. 2019; Cousminer et al. 2021; Ko 
et al. 2022), could be used to interrogate how nonadditive variation 
of trait architecture changes or evolves over time.

Data availability
Source code, tutorials, and tutorials for implementing the “multi
variate MArginal ePIstasis Test” are publicly available as an R 
package which is available online at https://github.com/ 
lcrawlab/mvMAPIT. We use the CompQuadForm R package 
(Duchesne and de Micheaux 2010) to compute P-values from the 
Davies method. The Davies method can sometimes yield a 
P-value equal exactly to 0 when the true P-value is extremely 
small (Duchesne and de Micheaux 2010). If this is of concern, 
one can compute the P-values for MAPIT using Kuonen’s saddle
point method (Kuonen 1999) or Satterthwaite’s approximation 
equation (Satterthwaite 1946). In the current implementation of 
mvMAPIT, the saddlepoint approximation is performed if the 
Davies method returns with error. We wrote our own function 
to combine P-values using Fisher’s method which is largely in
spired by functions in the metap R package (Dewey 2022). We 
use the harmonicmeanp R package (Wilson 2019a, 2019c) to com
bine P-values using the harmonic mean. We also write our own 
function to perform the Cauchy combination test based on work 
developed in Liu and Xie (2020). Full package documentation 
can be found at https://lcrawlab.github.io/mvMAPIT/. Data to re
produce figures for the broadly neutralizing antibodies as well as 
the mice study can be found at https://doi.org/10.7910/DVN/ 
WPFIGU (Stamp 2022).

Data about the binding affinity landscapes for neutralizing 
antibodies were downloaded directly from Phillips et al. (2021). 
Information about mice data set from the Wellcome Trust 
Centre for Human Genetics (Valdar, Flint, et al. 2006; Valdar, 
Solberg, et al. 2006) can be found at http://mtweb.cs.ucl.ac.uk/ 
mus/www/mouse/index.shtml. The genotypes from this study 
were downloaded using the BGLR-R package (Perez and de los 
Campos 2014). Details about the mice phenotypes can be found 
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at http://mtweb.cs.ucl.ac.uk/mus/www/mouse/HS/index.shtml
and hematological traits can be downloaded from the mvMAPIT 
package. In the real data analyses, SNPs were mapped to the clos
est neighboring genes using the Mouse Genome Informatics data
base (http://www.informatics.jax.org) (Blake et al. 2020).
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