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Abstract

The advancement of high-throughput genomic assays has led to enormous

growth in the availability of large-scale biological datasets. Over the last two

decades, these increasingly complex data have required statistical approaches

that are more sophisticated than traditional linear models. Machine learning

methodologies such as neural networks have yielded state-of-the-art perfor-

mance for prediction-based tasks in many biomedical applications. However, a

notable downside of these machine learning models is that they typically do

not reveal how or why accurate predictions are made. In many areas of

biomedicine, this “black box” property can be less than desirable—particularly

when there is a need to perform in silico hypothesis testing about a biological

system, in addition to justifying model findings for downstream decision-mak-

ing, such as determining the best next experiment or treatment strategy.

Explainable and interpretable machine learning approaches have emerged to

overcome this issue. While explainable methods attempt to derive post hoc

understanding of what a model has learned, interpretable models are designed

to inherently provide an intelligible definition of their parameters and archi-

tecture. Here, we review the model transparency spectrum moving from black

box and explainable, to interpretable machine learning methodology. Moti-

vated by applications in genomics, we provide background on the advances

across this spectrum, detailing specific approaches in both supervised and

unsupervised learning. Importantly, we focus on the promise of incorporating

existing biological knowledge when constructing interpretable machine learn-

ing methods for biomedical applications. We then close with considerations

and opportunities for new development in this space.
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1 | INTRODUCTION

A major focus in precision medicine has been to use computational tools to accurately predict disease outcomes and
identify associated biomarkers for effective follow-up evaluation. Over the last two decades, linear models have been
widely implemented to identify differentially expressed genes and enriched signaling pathways in functional genomics
(Love et al., 2014; Nueda et al., 2014; Ritchie et al., 2015; Robinson et al., 2009), characterize complex trait architecture
in genome-wide association studies (, 2010; Hayeck et al., 2015; Heckerman et al., 2016; Jiang et al., 2019; Kang
et al., 2008; Korte et al., 2012; Lippert et al., 2011; Loh et al., 2018; Price et al., 2010; Runcie & Crawford, 2019; Zeng &
Zhou, 2017; Zhou & Stephens, 2012), estimate the underlying generative model of gene networks (Karlebach &
Shamir, 2008; Ma et al., 2018; Manno et al., 2018), and perform effective normalization and dimensionality reduction
between studies performed across different time points, data collection sites, and tissue types (Hasin et al., 2017;
Lähnemann et al., 2020). Part of the utility of these approaches is their ability to provide statistical significance measures
such as p-values, posterior inclusion probabilities (PIPs), or Bayes factors which then can be used to facilitate downstream
tasks (e.g., selecting which molecular mechanism to target with drugs or choosing which clinical interventions would be
effective for a particular patient). Unfortunately, strict additive assumptions often hinder the performance of linear
models; and the most powerful of these approaches rely on training algorithms that are computationally inefficient and
unreliable for large-scale sets of data.

The continued advancement of imaging and sequencing technologies (Stephens et al., 2015) has provided the oppor-
tunity to integrate multimodal, nonparametric approaches as state-of-the-art tools within biological and clinical applica-
tions. Indeed, machine learning methods are well-known to have the ability to learn complex nonlinear patterns in
data and they are often most powered in settings when large sets of training examples are available (LeCun
et al., 2015). However, it has been heavily cited in the literature that many machine learning techniques suffer from a
“black box” limitation in that they do not naturally carry out classic statistical hypothesis testing like linear models,
which is critical for decision-making in precision medicine. One of the key characteristics that lead to better predictive
performance for nonlinear algorithms is the automatic inclusion of higher-order interactions between features being
put into the model (Crawford et al., 2018; Jiang & Reif, 2015). For example, neural networks leverage activation func-
tions between layers that implicitly enumerate all possible (polynomial) interaction effects between input features
(Demetci et al., 2021; Murdoch et al., 2019; Tsang, Cheng, & Liu, 2018; Tsang, Liu, et al., 2018; Wahba, 1990). This
has been shown to make a difference in accurately predicting traits of model organisms where phenomena like
epistasis (i.e., the interaction between multiple loci and/or genes) can play a large role in variation across species
(Bellot et al., 2018; Runcie et al., 2021; Swain et al., 2016; Weissbrod et al., 2016). While this is a partial mathematical
explanation for model improvement, in many biomedical applications, we often wish to know precisely which subsets
of genomic features (e.g., variants, genes, and pathways) are most important in defining the architecture of a phenotype
or disease outcome.

The main purpose of this manuscript is to review the considerable amount of methodological research that has been
put toward developing more “explainable” and “interpretable” machine learning in computational biology. Throughout
this paper, we will use the classic viewpoint that “explainability” has to do with the post hoc ability to use model param-
eters to justify predictions (also sometimes referred to as performing “variable importance” in certain areas of the litera-
ture) (Crawford et al., 2019; Lundberg & Lee, 2016, 2017; Ribeiro et al., 2016; Shrikumar et al., 2017); while
“interpretability” is where a model inherently provides an intelligible definition to its parameters and architecture
(Hira et al., 2019; Marcinkevics & Vogt, 2020; Shmueli, 2010). Both concepts can be divided into classes of methods that
seek to achieve explainability or interpretability on either (i) a global scale, where the goal is to rank/select input fea-
tures on their contributions to overall variation in an observed population, or (ii) on the local level, which aims to detail
on how important a variant is to any particular individual in the dataset. Here, we will focus on describing global-scale
approaches in neural networks with a particular motivation stemming from association mapping-based applications in
genomics. Our main contribution in this review is to provide a comprehensive landscape of what we describe as the
“transparency spectrum” for supervised and unsupervised learning algorithms as we move from black box, to explain-
able, and finally to interpretable methods (Figure 1).
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We want to highlight that this review frames interpretability as taking a statistical model with a large number of
parameters and mapping onto a space of sparse solutions. While this scope is commonly used in many scientific disci-
plines, we acknowledge that there are other ways to build interpretable methods (e.g., rule-based machine learning)
(Wang et al., 2017). We also leave human interaction with models, also commonly known as human-in-the-loop
machine learning, for another review (Lage et al., 2018; Mosqueira-Rey et al., 2022; Settles, 2009; Sverchkov &
Craven, 2017). The precise manner in which models are considered interpretable is domain specific. Our focus is moti-
vated by the fact that many genomic applications have more measured features than observed samples, thus rendering
simple linear models to be underdetermined. Here, sparse solutions are useful in taking steps toward the ultimate goal
of real-world decision-making. Specifically, in both wet-lab and clinical research, the objective is often to choose a small

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 1 An overview of the model transparency spectrum: moving from black box to more interpretable methods in supervised and

unsupervised learning. Supervised learning utilizes labeled datasets to learn a generalizable function to predict unobserved outcomes, while

unsupervised machine learning discovers relationships from unlabeled data based on a given task. Here, we define an “explainable” model

as being one that has the post hoc ability to use model parameters to justify predictions; however, “interpretable” methods inherently provide

an intelligible definition of parameters. (a) Depiction of a black box neural network architecture with genotypes as inputs and phenotypes as

output (Battle et al., 2015; Bell et al., 2011; Corsello et al., 2020; Rahman et al., 2019; Rakitsch & Stegle, 2016; Xiong et al., 2015). This model

is said to be “fully connected” since all neurons from one layer are connected to every activation unit of the next layer. The downside of this

formulation is that the classic notion of an effect size for each feature of the model is lost which prevents the ability to naturally carry out

classic statistical hypothesis testing. (b) By integrating a post hoc method after training, the inputs of the model can be ranked by their

influence on the phenotype, rendering the model explainable (Bourgeais et al., 2022; Crawford et al., 2018; Crawford et al., 2019;

Elmarakeby et al., 2021; Gray-Davies et al., 2016; Huang et al., 2021; Lundberg & Lee, 2017; Samek et al., 2019; Shrikumar et al., 2017;

Simonyan et al., 2013; Simonyan et al., 2014). (c) Interpretable supervised methods have three key components: (i) a motivating probabilistic

model, (ii) the notion of an effect size for each input feature, and (iii) a significance metric for variable selection. One intuitive way of

accomplishing this in machine learning is to use partially connected network architectures that are based on biological annotations or

scientific knowledge (Cheng et al., 2022; Demetci et al., 2021; Kim et al., 2021; Ma & Wang, 1999; van Bergen et al., 2020; Videla Rodriguez

et al., 2022). (d) Linear models are interpretable supervised methods because they naturally possess all components needed to carry out well-

controlled hypothesis tests (Du et al., 2019; Molnar, 2020). (e) Autoencoders attempt to simultaneously encode input data in a lower

dimensional representation using a neural network and decode that reduced representation into an approximation of the input (Kingma &

Welling, 2014). (f) By constraining the decoder to be linear, post hoc methods can be used to explain the decoder as if it were a linear factor

model (Svensson et al., 2020). (g) By incorporating biological annotations, sparse unannotated factors, and dense unannotated factors into a

linear decoder, an autoencoder becomes interpretable by examining the subcomponents of the model (Rybakov et al., 2020). (h) Principal

component analysis (PCA) is a classic linear dimensionality reduction technique. It still requires manual interpretation to understand the

learned latent factors (Tipping & Bishop, 1999).
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number of specific biomarkers or drug target candidates for follow-up. With this in mind, we position this review under
the framework that a major goal of achieving interpretability in biology is to directly map from a model to an actionable
set of sparse solutions.

Over the next three sections, we highlight the recent trend toward the development of more “biologically inspired”
machine learning where interpretability is achieved by strategies such as imposing partially connected model architec-
tures based on real-world annotations between features (Demetci et al., 2021; Elmarakeby et al., 2021; Lotfollahi
et al., 2023; Rybakov et al., 2020) or by implementing physics-based loss functions to mirror processes that one would
observe in nature (Karniadakis et al., 2021; Raissi et al., 2019). Finally, we provide a discussion on some important
considerations about the need for model transparency in certain biological and clinical applications in practice and
conclude with a review summary.

2 | SUPERVISED LEARNING

In this section, we give an overview of the “transparency spectrum” for supervised learning models in the literature
(Figure 1a–d). Here, a popular position taken by previous studies assumes that an interpretable supervised method
is made up of three key components: (i) a motivating probabilistic model, (ii) a notion of an effect size (or regression
coefficient) for each genetic variant, and (iii) a statistical metric that determines marker significance according to a
well-defined null hypothesis. In contrast, while an explainable supervised learning method may also provide these three
components, the distinct difference is that the important measure that explainable methods provide does not naturally
test against a calibrated null model.

3 | REVIEW OF GENERALIZED LINEAR MODELS

Supervised learning utilizes labeled datasets to learn a generalizable function to predict unobserved outcomes. Consider
a biological study with N training observations (e.g., the number of individuals, cells, tissues) that have been phe-
notyped for some response y¼ y1,…,yNð Þ. Assume that the i-th sample has been genotyped, sequenced, or profiled for J
features xi1,…,xiJð Þ (e.g., gene expression, single nucleotide polymorphisms, pixels in a clinical image). Collectively, this
results in a N� J matrix X. Without loss of generality to the approaches that are described in this section, we will
broadly refer to the input data in X as “genotypes” and the outcome response that we wish to model in y as the “pheno-
type”. To build intuition about explainable and interpretable models in the supervised learning space, first, consider a
standard generalized linear model (GLM)

g μð Þ¼ f , f ¼Xβ ð1Þ

where  y jX½ � ¼ μ is the expected value of the phenotype, g •ð Þ is a general link function, and f is an N-dimensional vec-
tor that is assumed to be a linear combination of each feature in X and their respective effects denoted by the J-dimen-
sional vector β¼ β1,…,βJð Þ additive coefficients. Classically, the distribution of phenotypes being studied will determine
the appropriate choice for the link function. For example, when the phenotype of interest is a continuous measurement
[e.g., height (Loh et al., 2015; Orliac et al., 2022), treatment efficacy (Ritchie et al., 2015)], g •ð Þ is set to the identity. In
a classification problem, where the phenotype of interest is a binary label (e.g., case–control studies (Jiang et al., 2021;
Wu et al., 2010)), g •ð Þ is often chosen to be a logit or probit function. Lastly, in the case where the phenotype is a col-
lection of discrete counts [e.g., RNA sequencing data (Love et al., 2014; Robinson et al., 2009)], then g •ð Þ can be set to a
log-link function.

A central goal of many biomedical applications is to jointly infer the true global effect and statistical significance of
each genotype on the phenotype. One classic strategy for estimating the regression coefficients in Equation (1) is to use
least squares where the phenotypic vector is projected onto the column space of the genotypic databβ¼Proj X,yð Þ¼X†y, with X† denoting the Moore-Penrose generalized inverse. We commonly refer to the vectorbβ¼ bβ1,…,bβJ� �

as the effect size estimates for each genotypic feature in the data set. Then, together with an estimated

set of standard errors for each feature, it is common to assess the null hypothesis that the true effect of each genotype is
equal to zero
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H0 : βj ¼ 0 vs: HA : βj ≠ 0: ð2Þ

The above results in p-values detailing the statistically significant relationship between each j-th input genotypic
vector and the phenotype. Importantly, under this traditional framework, a well-calibrated model will produce
uniformly distributed p-values and preserve type I error rates in the setting when the phenotypes are generated
under the null hypothesis (i.e., zero effects from the genotype). Moreover, under the alternative hypothesis, vari-
ous corrections have been established to adjust p-values derived from multiple statistical tests to correct for the
increased probability of identifying false positives (Barber & Candès, 2015; Datta & Datta, 2005; Efron, 2008; Efron
et al., 2001; Efron & Tibshirani, 2002; Greenland & Robins, 1991; Joo et al., 2016; Muralidharan, 2010; Sesia
et al., 2020; Stephens, 2016).

With the improvement of sequencing and imaging technologies, datasets in many current biomedical applications
have the ability to measure more (correlated) features than sampled observations (i.e., J >N). Due to the multi-collinear
and overdetermined nature of these data, it is not possible to use the ordinary least squares solution reliably
(Tibshirani, 1996). As a result, regularization techniques have been developed where a set of solutions for estimating
the effect sizes of Equation (1) can be written as

eβ¼ argmin
β

ℓ y,bμð Þþ λ 1�αð Þ k βk1þα k βk22
� �

, ð3Þ

with ℓ y,bμð Þ denoting a loss function between the phenotypic vector y and the fitted values bμ based on the predictions
made by the model. For regression problems, the loss function is typically the squared error loss; while, for applications
with discrete classes or counts, one could use the logistic or Poisson loss, respectively. Here, k •k1 and k •k22 denote L1
and L2, respectively, λ represents a free regularization parameter, and the term α distinguishes the type of regularization
to be used. Specifically, α¼ 0 corresponds to the “Least Absolute Shrinkage and Selection Operator” or lasso solution,
where the effect size of unimportant genotypic features are shrunken to be exactly zero (Tibshirani, 1996), α¼ 1 equates
to ridge regression (Hoerl & Kennard, 1970) where the effect size of unimportant genotypic features are shrunken
toward zero, while 0< α<1 results in the grouped elastic net penalty (Zou & Hastie, 2005).

Classical hypothesis testing assumes the model is selected before observing the data. When regularized regression is
used, hypothesis testing is typically conducted only on the selected variables. Maintaining the notion of the null hypoth-
esis in Equation (2), it is also common to choose significant features based on the magnitude of the regularized coeffi-
cients stemming from Equation (3). In practice, this can be done a few ways, including permutation (Arbet et al., 2017)
and covariance test statistics (Lockhart et al., 2014) that have been previously developed. This “double dipping” of the
data, however, results in inflated p-values. Recently, methods have been developed for performing hypothesis testing
while conditioning on the selection procedure (Lee et al., 2016; Taylor & Tibshirani, 2015; Tibshirani et al., 2016). For
example, for linear models that have performed variable selection via forward selection or the lasso, the distribution of
post-selective estimators can be determined exactly, allowing for computation of well-calibrated p-values for post-
selective hypothesis testing (Lee et al., 2016; Tibshirani et al., 2016).

As an alternative to regularization, one can also perform variable selection within a Bayesian framework. In this
paradigm, the coefficients of the generalized linear model in Equation (1) are treated as random variables with prior
distributions that reflect how one believes genotypic effects are associated with the phenotype of interest. A common
approach in genomics is to assume a priori that the distribution of null and non-null genotypes simply reflect the
hypotheses in Equation (2)—that is, in the statistical sense, by assuming that input variables are either in or out of
the final model. This can be formulated probabilistically by placing a spike-and-slab prior distribution on each of the J
coefficients (Chipman et al., 2001; George & McCulloch, 1993; Ishwaran & Rao, 2005)

βj � πN 0,σ2
� �þ 1�πð Þδ0 ð4Þ

where π denotes the total proportion of genotypic measurements that have a nonzero effect on the phenotype of inter-
est, σ2 is a scale variance parameter of the “slab” proportion of the mixture, and δ0 is a point mass at zero. To
facilitate posterior computation and inference, many approaches also introduce a J-dimensional binary indicator vari-
able γ¼ γ1,…,γJð Þ� 0,1f gJ where they implicitly assume a priori that Pr γj ¼ 1

h i
¼ π. Intuitively, γj ¼ 1 when βj ≠ 0 and
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the j-th genotypic variable is included in the model. We can derive marginal PIPs as statistical evidence that the effect
of the j-th input does not follow the null hypothesis

PIP jð Þ�Pr βj ≠ 0 j y,X
h i

ð5Þ

where we can define a candidate set or signature of important genotypic measures as those that satisfy j :PIP jð Þ>Tf g,
for some threshold T. In practice, this threshold T may be chosen subjectively (Hoti & Sillanpää, 2006), selected
through cross-validation to control for a desired family-wise error or false discovery rate (Stephens & Balding, 2009),
derived with the goal to construct posterior credible intervals in the setting of highly collinear features (Du et al., 2021;
Hormozdiari et al., 2014; Hutchinson et al., 2020; Wang et al., 2020; Zou et al., 2022), or simply taken to be T¼ 0:5 to
obtain an equivalence of the Bayesian “median probability model” (Barbieri et al., 2021; Barbieri & Berger, 2004). For
any set of significant features, further analyses may be carried out involving the relative costs of false positives and false
negatives to make an explicitly reasoned decision about which measurements to pursue in downstream tasks.

Lastly, knockoffs were recently developed for performing variable selection while controlling the false discovery rate
by constructing negative control variables (Barber & Candès, 2015; Candès et al., 2018; Sesia et al., 2020). For a set of
genotypes X and a phenotype y, knockoff variables eX are generated such that (i) corr xj,xk

� �
≈ corr exj,exk� �

(ii)

corr xj,xk
� �

≈ corr xj,exk� �
, and (iii) y is not used to create eX. A model is then constructed for predicting y from the com-

bined dataset of D¼ X; eXh i
. Since the knockoff variables have no relationship to y, they can be used to calibrate the

false discovery rate adaptively for a feature importance measure because they represent the null distribution of the fea-
ture importance values.

Summary. Generalized linear regression is the standard supervised learning framework that allows biological
researchers to estimate the effects of genotypic features on phenotypic variation. As sequencing and imaging technolo-
gies improve, so does the measured feature space, making it no longer possible to fit GLMs using least squares. Instead,
regularization techniques and Bayesian shrinkage strategies have been developed to overcome issues that arise in high-
dimensional data settings and to provide sparse solutions for downstream tasks. The advantage of GLMs is that they are
computationally efficient, provide uncertainty estimates through standard errors and confidence intervals, are often
robust to violations of their assumptions (such as non-normality and heteroscedasticity), and their coefficients are easy
to interpret. Perhaps most importantly, GLMs provide a natural setup to perform rigorous hypothesis testing. For exam-
ple, p-values characterize the statistical significance of the relationship between each genomic feature and the pheno-
type. Importantly, p-values are defined with respect to a null hypothesis (e.g., typically assuming that a feature has no
effect or that there is no difference between two populations). Nevertheless, GLMs are restrictive since they assume
some sort of linear relationship between features in the data; which is often underpowered in biological contexts where
nonlinear effects can be drivers of variation between outcomes (e.g., Brown et al., 2014). Further, GLMs require full
and manual enumeration of all biological interactions, which is impossible. In many cases, neural networks provide a
robust framework to model the nonlinearities seen in biology and can easily enumerate many biological interactions.
What is more, they are often more robust to violations of their assumptions. Further, probabilistic neural networks can
provide more insight into the underlying relationships between the predictor variables and the response variable and
the uncertainty in those relationships.

3.1 | Feedforward neural networks

In this section, we introduce relevant notation for general classes of feedforward neural networks for supervised learn-
ing. While there exist many nonlinear models, neural networks are well-known to have the ability to approximate com-
plex biological systems. For simplicity, we will focus on multi-layer perceptrons throughout this paper; however, we
also want to emphasize that the theoretical concepts we describe can also be applied broadly to other architectures
(e.g., convolutional and graph neural networks, etc.). Formally, we can specify a K-layer neural network to mirror a
generalized nonlinear model via the following

g μð Þ¼ f , f ¼ZKΘK þbK , � � �, Zk ¼ h Zk�1Θk�1þbk�1ð Þ, � � �, Z1 ¼ h XWþuð Þ ð6Þ

6 of 26 CONARD ET AL.
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where, in addition to previous notation, Zk denotes the matrix of nonlinear neurons from the k-th hidden layer with
corresponding weight matrix Θk, u and bk are deterministic biases that are produced during the network training phase
for the input and k-th hidden layer, h •ð Þ is a nonlinear activation function, and W is a matrix of weights for the input
layer. Throughout this section, we will use Hk to represent the number of neurons in the k-th hidden layer such that
the dimensions of W is J�H1 (i.e., the number of input genotypic features in X by the number of neurons in the first
hidden layer). Here, we also assume the penultimate layer is of dimension HK ¼ 1 since neurons in the last layer feed
into a single node which is used to estimate the latent function and make predictions (see Figure 1a).

There are a few key takeaways from the modeling framework in Equation (6). First, the ability of the neural net-
work to model non-additive effects is primarily done through the choice of the nonlinear activation function h •ð Þ. A
common practice in many biomedical applications is to use these nonlinear transformations to model the effects of phe-
nomena like gene-by-gene and gene-by-environmental interactions on complex traits and diseases (Cheng et al., 2019;
de los Campos et al., 2009; de los Campos et al., 2010; Morota & Gianola, 2014; Swain et al., 2016; Weissbrod
et al., 2016; Weissbrod et al., 2019). For example, in statistical genetics, it has been shown that the Taylor series expan-
sion of the Gaussian kernel function enumerates higher-order interaction terms between genetic variants (Crawford
et al., 2018; Jiang & Reif, 2015), thus alleviating the computational burden of having to explicitly enumerate all possible
combinations of interacting pairs in a given model (Crawford et al., 2017). One common choice for an activation func-
tion in neural networks is the rectified linear unit (ReLU) (Xu et al., 2015) family of operators which shares a similar
property for implicitly encoding interactive effects. To see this, consider a general example of the ReLU function applied
to the first hidden layer of Equation (6) where h XWþuð Þ¼ max 0,XWþuf g. Under this formulation, the effect that
any one genotypic feature has in determining the output of the ReLU activation jointly depends on the effects of all
other genotypic measurements in the data. Hence, h •ð Þ captures the dependence or interaction between the inputs in
the function. The bias term u allows each node across hidden layers to change slope for different combinations of
inputs. Theoretically, as more nodes and hidden layers are added to the network architecture (i.e., mirroring more
“deep learning” methodologies), the model will have an even greater ability to account for non-additive variation (act-
ing similarly to classic Gaussian process regression methods) (Lee et al., 2018).

The second key takeaway from the formulation in Equation (6) is that, when all weights in the matrices
W,Θ1,…,ΘK are nonzero, the neural network is said to be “fully-connected” since all neurons from one layer are con-
nected to every activation unit of the next layer (Figure 1a). The downside of this formulation is that the classic notion
of an effect size for each feature of the model is lost. In other words, if we let wj • be the set of weights in the j-th row of
W corresponding to the j-th feature, then the effect of the j-th feature is only considered null during the model training
when each element in the vector wj • ¼ 0. This has led to the development of many different approaches to overcome
this limitation.

Summary. There are many benefits to using feedfoward neural networks including having the ability to model
highly complex nonlinear relationships between input features, learning and extracting latent patterns from data with-
out explicit feature engineering, and having the flexibility multiple data modalities for various tasks. Unfortunately, the
concept of variable selection is lost within these models because, with a large number of fully connected hidden layers,
there is no classic notion of an effect size for each feature. Recall that an advantage of GLMs is being able to produce
significance metrics such as p-values that are both well calibrated and preserve type I error rates with respect to a null
hypothesis. Despite the powerful ability of fully-connected neural networks to model nonlinear relationships and inter-
actions between features, rigorous hypothesis is not as straightforward. Modern neural networks can also be highly
over-parameterized which further contributes to difficult interpretations. Together, these issues motivate a growing
body of work in the sub-field of explainable machine learning. Explainability methods often seek to develop importance
metrics for both input features and model parameters as a proxy for regression effect sizes and significance testing.

3.2 | Explainable approaches for feedforward neural networks

Explainable machine learning methods employ auxiliary techniques where features are assessed for importance after
model training is completed (Figure 1b). In this section, we examine several types of such explainable approaches
which commonly provide a variable importance score that attempts to replicate the statistical notion of an effect size
for nonlinear models. There are a wide variety of different variable importance scores in the literature. While many of
these techniques share theoretical connections between them (Lundberg & Lee, 2016), it is also common to characterize
these measures as broadly fitting into one of two categories. The first are “salience methods” (also commonly known as
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“saliency maps” (Simonyan et al., 2013, Simonyan et al., 2014)) which seek to describe the marginal effect of features on
an output by comparing the fitted model to a baseline. The second class of explainable methods are known as “sensitivity
scores” which quantify variable importance by measuring the amount of predictive accuracy that is lost when a particular
feature is perturbed. Common examples in this second class of methods include relative centrality measures (Crawford
et al., 2019; Paananen et al., 2019; Paananen et al., 2021; Woo et al., 2015), DeepLIFT (Shrikumar et al., 2017), and
Shapley Additive Explanations (SHAP) (Lundberg & Lee, 2017), among others. Note that many of the approaches we dis-
cuss here can be used with any model (e.g., random forests, kernel regression machines) and not just neural networks.

Saliency maps are attribution methods that are usually used in imaging-based applications and are typically pres-
ented via heatmaps to help users delineate relevant pixels for image classifications made by neural networks. Scores of
greater magnitude correspond to the regions that have the largest impact on the model predictions. One of the initial
implementations of this method from Simonyan et al. (2013) calculates the gradient of the model loss function with
respect to the input pixels for a class of interest. This approach has parallels to classic backpropagation given an image
of interest and a classification task. The first step is to perform a forward pass with the data, followed by a backward
pass to compute the gradient, and ends with visualizing the gradients as either positive, negative, or absolute values.
While backpropagation typically does not change the inputs, the method from Simonyan et al. backpropagates back to
the input layer to determine which pixels influence the output classification most, denoted by a classification score. Spe-
cifically, this predicted class score f i for the class of interest yi ¼ 1 and with respect to an input image xi, is calculated as

f i ≈ x>
i wþu wj ¼ ∂f i

∂xij
, ð7Þ

where the j-th element of the weight vector wj is the partial derivative of the function f i with respect to the j-th pixel in
the image xij, and u is the model bias term (Simonyan et al., 2013). Equation (7) provides an effect size-like element
which prioritizes the J pixels in order of importance for a given image class. Note that this class score can be thought of
as taking the network's first-order Taylor expansion on the input. The backward pass to compute the gradients in
Equation (7) can pose a challenge due to nonlinear units removing signs (i.e., similar to the ReLU activation function
with positive or negative weights). Simonyan et al. devised a backpropagation technique to address this ambiguity.
Consider a two-layer neural network where xi is the input image and z1 denotes the single hidden layer. Then the
backpropagation issue is mitigated by using the following update

∂f i
∂xi

¼ ∂f i
∂z1

�  xi >0f g ð8Þ

where z1 is the hidden neuron after running data only on a single sample, and  •f g is the element-wise indicator func-
tion, resulting in one when the activation at the lower layer is nonnegative, and zero otherwise. Assigning global impor-
tance with saliency maps can be done by taking the mean absolute values of the gradients

PN
i¼1 j ∂f i=∂xij j =N . The

associated absolute value of the gradients (i.e., coefficients) of each feature in the model's linear representation repre-
sents the feature ranking or importance across all samples in the dataset (Simonyan et al., 2013).

Another widely used technique for providing explainability in supervised learning models is DeepLIFT where the
core idea is to compare the activation of a hidden neuron for a specific observation in the data to a “reference activa-
tion” (Shrikumar et al., 2017). In practice, DeepLIFT requires the user to specify the reference. Using the probabilistic
setup in Equation (6), we say that a hidden neuron with inputs can be formulated by z1 ¼ h x>

i wþu
� �

with output var-
iable f i. Given some reference inputs, which we will denote by x0i , the reference activation can be determined by
z01 ¼ h x0i

� �>
w0þu0

� �
which leads to a reference output f 0i . For example, in biomedical applications, reference data

could be determined by sequencing gene expression for healthy individuals rather than disease cases. If we define the
“difference-from-reference” between outputs in the general form Δt¼ t� t0, then DeepLIFT assigns scores as

XJ
j¼1

CΔxijΔf i ¼Δf i: ð9Þ

Shrikumar et al. (2017) refer to the above as the “summation-to-delta property” where CΔxijΔf i measures the amount
of deviation from the true prediction f i that is attributed by altering a given feature xij. Unlike the saliency map
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approach described in Equations (7) and (8), it is possible for a contribution score CΔxijΔf i ≠ 0 even when the gradient
∂f i=∂xij ¼ 0. Rather than working with gradients directly, DeepLIFT uses finite differences with respect to input pertur-
bations via “multipliers” defined as

mΔxijΔf i ¼
CΔxijΔf i
Δxij

: ð10Þ

The authors develop a calculus for multipliers and define (i) rules for assigning contribution scores for linear layers,
(ii) a rescaling rule for nonlinear activation functions, and (iii) a rule for dealing with saturation and thresholding.
These rules allow them to calculate each CΔxijΔf i and use it as a feature importance score.

While DeepLIFT chooses linearization root points based on reference value propagation through the network, there
are other ways to determine the magnitude of a given feature's effect on a model's prediction. For example, Shapley
Additive Explanations (SHAP) (Lundberg & Lee, 2017) assign feature importance weights based on game theoretic prin-
ciples (Roth, 1988; Shapley, 1951). Shapley values essentially determine a payoff for all players when each player might
have contributed more or less than the others when attempting to achieve the desired outcome. In genomics, this is
done by considering all possible “coalitions” (or subsets) of genotypes S ⊆J and then simply comparing the perfor-
mance of a model trained with and without the j-th genotype added to each coalition. Mathematically, this can be rep-
resented as the following

ϕj ¼
X

S ⊆ J n jf g

j S j ! J�jSj�1ð Þ!
j J j !

� 	
f S [ jf g � f S
� �

ð11Þ

where j S j is the cardinality of the given coalition, j J j¼ J is the dimensionality of all genotypes in the data, and f S [ jf g
and f S is the model fit with and without the j-th genotype added to the coalition set S, respectively. Unfortunately, con-
sidering all possible combinations of measured features means that one must fit 2J different models which are often
computationally infeasible for many modern biomedical datasets. Given this challenge, approximate methods have
been developed, including those such as DeepSHAP which utilize efficient Shapley value estimators and other rescaling
rules to provide explanations for complex series of models (Chen et al., 2022; Lundberg & Lee, 2017). For instance,
DeepLift can be used to compute Shapley values when the reference is taken to be the sample average (Lundberg &
Lee, 2017).

Applying these auxiliary approaches to trained supervised black box models has been shown to contribute to the
post hoc comprehension of what signal machine learning detects in many biomedical applications. For example, several
studies have used saliency maps to detect genotypic aberrations and prognoses from histopathology slides (Adebayo
et al., 2018; Fu et al., 2020; Kather et al., 2020). Maslova et al. (2020) used DeepLIFT to identify regulatory DNA
sequences that are important when trying to infer cell type-specific chromatin accessibility. Lastly, Tasaki et al. (2020)
used DeepSHAP to find biomarkers from the differential expression based on genome-wide binding sites on both
genome promoters and RNA.

Summary. Taken together, explainable machine learning methods have gained prominence for understanding vari-
able importance in nonlinear models (e.g., Lipton, 2018). Each of the explainable ML methods described in this
section provide scores that are meant to serve as a proxy to the statistical notion of an effect size which is naturally
given in traditional linear regression. Explainability is useful to glean insights into an otherwise black box method. Pro-
viding ranked lists that focus on prioritizing the most relevant features can help improve the usability and effectiveness
of machine learning models (Stites et al., 2021). Nevertheless, without a framework for rigorous hypothesis testing with
these post hoc methods, there is an inability to control for type I error rates. For example, Shapley values have been
shown to be misleading in the presence of correlated features, although there have been extensions to mitigate
this issue (Aas et al., 2021; Li et al., 2017; Tolosi & Lengauer, 2011). Moreover, since post hoc explainable approaches
are performed after a model is trained, they can be unaware of the latent structure of black box algorithms and can
make erroneous elucidations (Aas et al., 2021). More importantly, these types of misleading explanations can hinder
decision-making and can contribute to distrust in machine learning (Herman, 2017). This is particularly relevant in the
biomedical applications where the transparency of an underlying method is often crucial for making the most informed
decisions for downstream tasks.
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3.3 | Interpretable feedforward neural networks

Recently, there have been efforts to move beyond explainability by leveraging more classic group regularization and
variable selection shrinkage priors to control the sparsity-inducing behavior of neural networks (Chen et al., 2020;
Kassani et al., 2022; Lu et al., 2018; Song & Li, 2021). Recall that, in a fully connected feedforward model such as
the one specified in Equation (6), the effect of the j-th genotype xj is considered null when all weights in the j-th row of
W are set to zero or wj • ¼ 0. Feng and Simon (2017) developed the “sparse input neural networks” (SPINN) which uses
a “sparse group lasso” penalty to solve the following optimization problem

ewj • ¼ argmin
η

ℓ y, f η
� �

þ λ0
XK
k¼1

kΘkk22þ λ 1�αð Þ kwj • k1þα kwj • k2
� � ð12Þ

where, similar to the notation used in Equation (3), η¼ W,u,Θ1:K ,b1:Kf g represents all of the parameters in the neural

network, λ0 and λ are free regularization parameters, and ℓ y, f η
� �

now denotes a loss function between the observed

output y and the model prediction f η. Feng and Simon (2017) describe three key components in this criterion. First, the

ridge penalty kΘkk22 controls the magnitude of the weights in the K hidden layers. The 0< α<1 is a mixture parameter
that balances between the lasso and group lasso regularization schemes. When α¼ 0, the group lasso encourages
that all weights corresponding to the j-th genotypic variable are zero. Alternatively, when α¼ 1, the lasso encourages
sparsity across all weights in the input layer.

There are several ways to induce sparsity across a group of weights corresponding to a single input node using
Bayesian shrinkage priors (Fortuin, 2022). For example, Ghosh, Yao, and Doshi-Velez (2019) perform general variable
selection on features using horseshoe priors where they assume a conditionally independent Gaussian scale mixture
distribution over each of the weights in a neural network

wj • �N 0,τ2j v
2
0I

� �
, τ2j �Cþ 0,aτð Þ, v20 �Cþ 0,avð Þ ð13Þ

with τ2j being a genotype-specific (i.e., local) scale parameter, v20 is a scale parameter that is shared across all weights in
the input layer (i.e., global), Cþ 0,að Þ is used to denote the half-Cauchy distribution with a>0, and I represents the iden-
tity matrix. The horseshoe prior has flat and heavy tails with an infinite spike at zero (Carvalho et al., 2009) which
allows for genotypes with significantly large effects on the phenotype to not be penalized by any shrinkage. This is in
contrast, for example, to the lasso and other sparse priors, which perform uniform shrinkage across all weights in the
model. Ghosh, Yao, and Doshi-Velez (2019) show that by forcing all the weights corresponding to a single node to share
scale parameters, Equation (13) induces sparsity at the genotype level and turns off the effect of genotypes that do not con-
tribute to the variation of the phenotype. Carvalho et al. (2010) showed that the horseshoe prior also has the additional prop-
erty of producing inclusion probability-like measures. Here, the authors describe that if we define a “shrinkage weight”
γj ¼ 1= 1þ τ2j

� �
, which lives on the unit interval 0,1½ �, then the quantity 1� γj can play a similar role in probabilistic

neural networks and can be used to select sets of genotypes that are most significantly associated with the phenotype.

As an alternative to the horseshoe prior, Cheng et al. (2022) proposed using a “grouped single-effect” shrinkage prior
on the input weights of neural networks. Framed as a nonlinear extension to the “single effects regression” (SER) model
by Wang et al. (2020), this method aims to overcome the challenge in high-dimensional biomedical settings where there
are many correlated genotypic measurements but only a few directly affect the phenotype of interest. Here, the strategy is
to build “credible sets” which determine a candidate subset of genotypic features that appear to have some sort of statisti-
cal association with the phenotype even though we are unclear as to which specific ones are truly causal. Keeping consis-
tent with our notation, the grouped “single-effect” shrinkage prior for neural networks can be specified as

W¼A ∘Γ, aj • �N 0,σ2I
� �

, γ�Mult 1,πð Þ: ð14Þ

where aj • is a H1-dimensional row-vector of continuous weights in A¼ a1 • ,…,aJ •½ �, ∘ denotes the Hadamard product
(i.e., element-wise multiplication) between two parameters, γ is a binary indicator that determines which genotype in X
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is to have a nonzero effect, Γ is a matrix that is H1 copies of the binary vector γ, and Mult m,πð Þ denotes a multinomial
distribution with m samples drawn with class probability π. Note that by setting m¼ 1, only one row in W (i.e., the
weights corresponding to only one genotypic input) will have a nonzero entry for modeling the single effect. Hence,
under this formulation, when γj ¼ 1, the rest of the input genotypes are excluded from the model. Together, Cheng
et al. (2022) refer to the model above as a “single-effect neural network” (SNN). The SNN resembles the SER model in
that it assumes that only one input has an effect on the response and, thus, posterior inclusion probabilities can be com-
puted via

PIP jð Þ�Pr wj • ≠ 0 j y,X� �
: ð15Þ

which is then used to determine variable significance. This approach can also be extended to flexibly allow for many
genotypes to have an effect on a phenotypic outcome by taking an ensemble of single-effect neural networks. A ρ-level
credible set can be constructed from this method by simply sorting genotypes in descending order according to their
PIPs and then including each feature into the set until the cumulative probability exceeds ρ (Du et al., 2021;
Hormozdiari et al., 2014; Hutchinson et al., 2020; Wang et al., 2020; Zou et al., 2022).

3.3.1 | Biologically inspired feedforward neural networks

Each of the previous advances in sparse model development for machine learning has motivated researchers to develop
customized neural network architectures that are inspired by biological systems. Here, rather than implementing fully
connected and (often times) overparameterized models, these novel frameworks have partially connected architectures
that are based on biological annotations in the literature or derived from other functional relationships that have been
identified through experimental validation (Figure 1c). The biological system is governed by coordinated gene and path-
way regulation, where interactions happen at various molecular levels. These relationships can be seamlessly integrated
into neural networks such that their components and parameters have a true genomic interpretation. Partially con-
nected neural networks are considered to be more interpretable because each node encodes some biological unit
(e.g., single nucleotide polymorphisms, genes, or pathways) and each weight represents a known relationship between
the corresponding entities. For example, Demetci et al. (2021) developed “Biologically Annotated Neural Networks” or
BANNs which are a class of feedforward Bayesian models to study non-additive variation in complex traits from
genome-wide association studies. Here, the input layer encodes SNP-level effects and the hidden layer models the
effects among SNP-sets. The Deep GONet model by Bourgeais et al. (2021) used the Gene Ontology (GO) database to
preserve the hierarchical relationships between cellular mechanisms and used the interpretable architecture for an
explanation of cancer detection on three different levels: disease, subdisease, and on the individual patient-level. Simi-
larly, Elmarakeby et al. (2021) developed P-NET to stratify prostate cancer patients by treatment status and evaluated
molecular drivers of therapeutic resistance. In P-NET, the input layer represents multimodal measurements of genes,
and each subsequent hidden layer represents different signaling cascades throughout the cell.

Biologically inspired neural networks can be probabilistically formulated by taking a slight reformulation of
Equation (6). Assume that we have a set of predefined annotations A1,…,AGkf g which are used to functionally group
the different genotypes in X on the k-th genomic scale (with k¼ 0 representing the input layer). We will use these anno-
tations to construct a K partially connected network that represents K different scales of genomic units. Formally, we
can specify the following

g μð Þ¼ f , � � �, f ¼
XGK

l¼1

ZKlΘKlþbKl, � � �, Z1 ¼
XG0

g¼1

h XgWgþug
� � ð16Þ

where, in addition to previous notation, Xg is the subset of genotypes that have been annotated for the g-th set on the
input layer; Zkl is the subset of hidden neurons that have been annotated for the l-th set on the k-th genomic scale; and
Wg and Θkl are the corresponding weight matrices, respectively. In practice, the weight matrices Wg ¼W ∘Mg and
Θkl ¼Θk ∘Mkl are constructed by taking the Hadamard product with a binary mask matrix M to zero-out all the con-
nections that do not exist in the set of annotations. It is worth noting that the hierarchical structure of the joint
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likelihood in Equation (16) can be seen as a nonlinear take on classical integrative and structural regression models
frequently used in many areas of computational biology (Califano et al., 2012; Carbonetto & Stephens, 2013; Kichaev
et al., 2019; van der Wijst et al., 2018; Wang et al., 2008; Yang et al., 2017; Zhu & Stephens, 2018).

The key innovation of biologically inspired neural networks is that they allow practitioners to perform multi-scale
inference on multiple genomic levels (e.g., association mapping of SNPs and enrichment analyses of functional path-
ways), simultaneously. Similar to other classes of feedforward models, there are many ways to conduct inference within
this framework. In the P-NET model, Elmarakeby et al. (2021) utilize DeepLIFT to prioritize a novel candidate gene sig-
nature of therapeutic resistance which they then validate with wet-lab experimentation (Equations (9) and (10)). The
Deep GONet model uses regularization to identify important genes and ontologies (Equation (12)). In the BANNs
method, Demetci et al. (2021) take a Bayesian approach by treating the weights of the input and hidden layers as ran-
dom variables. Here, the authors specify scale-specific priors to reflect how effect size distributions of non-null genomic
markers can take different forms depending on the phenotype of interest. Generally, these take on forms similar to the
point mass mixture distributions commonly used in variable selection (e.g., Equation (4))

w gð Þ
j • � πwN 0,σ2w

� �þ 1�πwð Þδ0, θ lð Þ
k • � πθkN 0,σ2θk

� �
þ 1�πθkð Þδ0 ð17Þ

with w gð Þ
j • and θ lð Þ

k • being individual elements in the sparse weight matrices in Wg and Θkl, respectively. Additionally, πw
and πθk denote the total proportion of genotypes and annotated sets that have a nonzero effect on the phenotype of
interest. By modifying a variational inference algorithm assuming point-normal priors in multiple linear regression,
Demetci et al. (2021) derive posterior probabilities that any weight of a given connection in the neural network is
nonzero

PIP jgð Þ�Pr w gð Þ
j • ≠ 0 j y,X

h i
, PIP klð Þ�Pr θ lð Þ

k • ≠ 0 j y,X
h i

: ð18Þ

With biologically annotated units and the ability to perform statistical inference on explicitly defined parameters,
biologically inspired methods like BANNs, Deep GONet, and P-NET represent a step toward fully interpretable exten-
sions of neural networks to biomedical applications.

Summary. In recent years, there has been a movement toward controlling the sparsity-inducing behavior of neural
networks through classic group regularization and variable selection shrinkage priors, rather than relying solely on post
hoc explainability approaches. By inducing sparsity on the weights between nodes in the network, these methods allow
for identification of genotypes that are most significantly associated with the variation of a phenotype, all while improv-
ing the interpretability, flexibility, and generalizability of the model. Biologically inspired feedforward neural networks
make further improvements by ensuring that all components of the model have a contextual interpretation and offer a
unified frameowrk for conducting multi-scale inference and biomarker discovery. One key disadvantage of this
approach is that it depends on reliable domain knowledge to generate these interpretable architectures. When this level
of real world evidence is not available, as is the case for many practical scientific problems, implementing this strategy
can be extremely challenging. Inferring data-driven relationships between molecular features without any a priori
knowledge can also be difficult (e.g., Demetci et al., 2021). As a result, many of the current biologically inspired
methods treat neural network architectures as fixed based on a predefined set of annotations. As we continue to build
more robust domain knowledge, the strength and quantity of labeled data will improve, leading to an opportunity for
these biologically inspired methods to have greater impact.

4 | UNSUPERVISED LEARNING

In this section, we now give an overview of the “transparency spectrum” for a subset of unsupervised learning models.
Unsupervised machine learning discovers relationships from unlabeled data based on a given task. In biomedical appli-
cations, these tasks can include dimensionality reduction over large genetic data sets to identify latent relationships
between human populations (Novembre et al., 2008; Patterson et al., 2006), clustering to identify cell types with similar
molecular profiles (Ringnér, 2008), visualization of diverse data modalities (Becht et al., 2019; Ringnér, 2008) and
others. While supervised learning assumes that an interpretable model has three clearly defined components with the
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single task of learning a function to predict outcomes, it is more difficult to delineate these components within
unsupervised models as these methods may be used to address one of many research questions. Here, we will focus on
reviewing popular unsupervised learning approaches that perform dimensionality reduction and aim to interpret the
learned latent space (i.e., the representation of the data with reduced dimensionality). Specifically, we will focus on
autoencoders which have become widely used in many biomedical applications (Figure 1e–h). We will begin by
reviewing principal component analysis, which can be thought of as a linear autoencoder, and then we will examine
nonlinear autoencoders along the model transparency spectrum.

4.1 | Review of probabilistic PCA

The general goal of dimensionality reduction techniques is to find a low-dimensional representation of a high-
dimensional dataset. The prototypical example of this approach is principal components analysis (PCA), commonly
used as a preprocessing technique in genome-wide association studies (Patterson et al., 2006), the analysis of gene
expression and functional genomics (Townes et al., 2019), and many other areas of biomedicine including clinical imag-
ing (Mwangi et al., 2013). As in the supervised case, we will consider a biological study with N training observations
profiled for J genotypic features. Here, we will use xi ¼ xi1,…,xij

� �
to now represent a row-vector of these measurements

for the i-th observation, resulting in an N� J matrix X¼ x1,…,xN½ �. Probabilistic PCA (Tipping & Bishop, 1999) assumes
that, for each xi, there exists a normally distributed K-dimensional latent variable zi such that

xi j zi �N μþWzi,σ2I
� �

zi �N 0,Ið Þ, ð19Þ

where the dimensionality K < J , μ is the mean of the data, σ2 is the error variance, and W is a J�K dimensional matrix
that contains “principal axis directions”. To draw an analogy with the supervised machine learning models we previ-
ously discussed, note that the principal directions in W define a linear function that relates the input data to its latent
representation. If the input genotype data X is assumed to be mean-centered column-wise at zero, then the above sim-
plifies to

xi j zi �N Wzi,σ2I
� �

, ð20Þ

and by marginalizing out the latent variable, we obtain

xi �N 0,WW> þσ2I
� �

: ð21Þ

Note that as σ2 ! 0, we obtain classical principal component analysis where the sample covariance of the input
genotype data can be represented by the product of the principal axes (Tipping & Bishop, 1999).

Probabilistic PCA models high dimensional data via a linear transformation to a lower dimensional latent space where
data are assumed to be normally distributed. In the next section, we will generalize this framework to the variational
autoencoder, which nonlinearly models data via lower dimensional latent spaces. PCA is probably the optimal method for
performing linear dimensionality reduction with a given number of latent variables according to the Eckart-Young-Mirsky
theorem (Eckart & Young, 1936). Since PCA is a linear method, it might naively be considered interpretable, yet it still
requires practitioners to examine principal component (PC) directions manually. There is no built-in notion of statistical
significance for selecting the number of PCs to use nor to test which genotypes are significant contributors to a particular
PC. Although the Marchenko–Pastur distribution asymptotically describes the distribution of singular values of random
matrices, this is not often used in practice as a null distribution (Johnstone, 2001; Marčenko & Pastur, 1967). Rather, prac-
titioners will qualitatively choose the number of PCs using an “elbow plot” or by using the “jackstraw” resampling proce-
dure for an empirical null distribution (Chung & Storey, 2015). Though a principal component will often be related to
confounders like batch effects or population structure, it can represent meaningful scientific results. For example, a well-
known result in population genetics is that a scatterplot of the first two principal components of SNP data in individuals
of self-identified European ancestry is visually similar to a map of Europe (Novembre et al., 2008).
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4.2 | Autoencoders

Autoencoders have become widely used tools in biomedicine and played key roles in tasks such as (Eraslan et al., 2019;
Gayoso et al., 2022; Lopez et al., 2018) like imputation, batch correction, visualization, and clustering. Although these
models are capable of expressing highly sophisticated data-generating processes, they are algorithms that can often be
highly opaque and “black box” due to the often “entangled” nature of their learned latent spaces (Radford et al., 2016).
This is dissimilar to PCA, which generates a new system of orthogonal axes that may have a meaning that is interpret-
able to the modeler. In fact, PCA can be viewed as a linear implementation of an autoencoder, while autoencoders are
more general nonlinear methods for dimensionality reduction. We now survey examples of autoencoders that span the
transparency spectrum between black box and interpretable. In the particular case of interpretable autoencoders, the
interpretability comes from models that incorporate prior knowledge in the form of biological annotations.

An autoencoder is defined by two functions: an encoder e :X !Z, and a decoder d :Z!X —both of which map
between an input space X and a learned latent space Z (Hinton & Salakhutdinov, 2006). Keeping our notation consis-
tent, we assume that the dimensionality of these spaces are dim Xð Þ¼ J and dim Zð Þ¼K, respectively, with K < J. Tak-
ing the genotypes for a given observation xi �X , a lower-dimensional representation can be obtained as a function of
the encoder zi ¼ e xið Þ and the decoder is used to approximately reconstruct the data xi ≈ d zið Þ (Goodfellow et al., 2016).
The functions e •ð Þ and d •ð Þ are usually modeled using fully connected neural network architectures, and their
corresponding weights are typically estimated using an algorithm based on stochastic gradient descent (Figure 1e). Intu-
itively, a successfully trained model aims to minimize the distance between the original and reconstructed data via
some loss function

ℓ xi,d zið Þð Þ¼ℓ xi,d e xið Þð Þð Þ ð22Þ

where, similar to previous notation, ℓ xi,x0i
� �

denotes a loss function of choice. A common choice in the literature is to
simply take this function to be the squared loss ℓ xi,x0i

� �¼P i k xi�x0ik2 across all N observations in the data.

4.3 | Variational autoencoders

Autoencoders are effective at performing dimensionality reduction but the standard formulation has no distributional
assumptions on the latent space. Consequently, this makes generating new data a challenge for autoencoders where, in
theory, this would be done by randomly drawing a new z�i �Z and generating new points x�i ¼ d z�i

� �
�X by passing

them through the decoder. Variational autoencoders (VAEs) were developed in order to make autoencoders more effec-
tive as generative models that can produce new data (Kingma & Welling, 2014). They solve the data generation problem
by augmenting the modeling framework to assume that that variable in the latent space follows standard multivariate
Gaussian distributions. This allows for a straightforward sampling scheme to generate new data. Under these assump-
tions, we can write the VAE similarly to probabilistic PCA where

xi j zi �N d zið Þ,σ2I� �
, zi �N 0,Ið Þ: ð23Þ

Under this formulation, one can represent the encoder zi ¼ e xið Þ as the conditional distribution pη zi jxið Þ and the
decoder xi ≈ d zið Þ as pη xi jzið Þ, respectively, where once again we use η to represent the free parameters in the neural
network architecture. Intuitively, a successfully trained model achieves a minimized loss function ℓ xi,d zið Þð Þ between
the original and reconstructed data by maximizing the marginal log-likelihood which takes on the form

log pη x1,…,xNð Þ¼
XN
i¼1

log pη xið Þ, pη xð Þ¼
Z

pη xi jzið Þpη zið Þzi: ð24Þ

Notably, when autoencoders utilize (nonlinear) neural network architectures, optimization becomes difficult due to
the intractability of the marginal likelihood. This in turn makes estimating the posterior distribution (i.e., the encoder)
pη zi jxið Þ¼ pη xi jzið Þpη zið Þ=pη xið Þ also intractable. As an alternative approach, one can use variational inference to
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formulate a lower bound to the marginal log-likelihood. Here, the main idea is to replace the true posterior distribution
pη zi jxið Þ with an approximating family of distributions qϕ zi jxið Þ. It can be shown that finding a suitable approximation
amounts to selecting the variational parameters ϕ that minimize Kullback–Leibler (KL) divergence between pη zi jxið Þ
and qϕ zi jxið Þ. The intuition behind this objective becomes clear when we rewrite Equation (24) as

log pη xið Þ¼ℒ η,ϕ;xið ÞþKL qϕ zi jxið Þ k pη zi jxið Þ
� �

: ð25Þ

Since the KL-divergence is a non-negative quantity and equates to zero if and only if qϕ zi jxið Þ¼ pη zi jxið Þ, the first
term ℒ η,ϕ;xið Þ denotes the (variational) lower bound to the marginal log-likelihood. Thus,

log pη xið Þ≥ℒ η,ϕ;xið Þ¼qϕ zi jxið Þ logpη xi,zið Þ� logqϕ zið jxiÞ
h i

¼qϕ zi jxið Þ logpη xi jzið Þ
h i

�KL qϕ zi jxið Þ k pη zið Þ
� �

:
ð26Þ

To conduct (posterior) inference, VAEs are usually implemented by taking the gradient of Equation (26) and opti-
mizing the model with respect to both the variational parameters ϕ and the generative network parameters η. In prac-
tice, it is common to consider a stochastic gradient variational Bayes (SGVB) view on VAEs which yields the following
general expression for the lower bound of the log-likelihood

ℒ η,ϕ;xið Þ¼ 1
L

XL
l¼1

logpη xi jz lð Þ
ϕ

� �
�λKL qϕ zi jxið Þ k pη zið Þ

� �
: ð27Þ

The first term on the right-hand side is commonly referred to as the “reconstruction loss” (Ghosh, Sajjadi,
et al., 2019; Tolstikhin et al., 2018); while the second term can then be viewed as a “regularized loss” function where
the variational posterior distribution qϕ zi jxið Þ is being adjusted to approximate a prior distribution specified over the
latent space pη zið Þ (Ghosh, Sajjadi, et al., 2020; Tolstikhin et al., 2018). In practice, the term λ≥ 0 represents a weight
parameter for the KL term to balance the trade-off with reconstruction (Ghosh, Sajjadi, et al., 2020; Higgins
et al., 2017). Lastly, z lð Þ

ϕ is used to denote an empirical Monte Carlo sample of zi which is computed using a re-parame-
terization trick of Gaussian distributions. By taking L Monte Carlo samples of z 1ð Þ

ϕ ,…,z Lð Þ
ϕ , the reconstruction loss and

the regularized loss in Equation (27) can be analytically computed.
One common final step for VAEs that are used in genomics is to have the final layer of the autoencoder output

parameters of probability distributions rather than reconstructed or newly generated data. For example, the scVI model
(Gayoso et al., 2022; Lopez et al., 2018) takes in single-cell gene expression measurements as input and outputs hyper-
parameters for a Gamma distribution that are used as parameters for a Poisson model to generate expression profiles of
new single-cell data. In this setting

x0ij � Poisson wij
� �

, wij �Gamma ψ ij,ϑj
� �

, ψ i ¼ d zið Þ, zi �N 0,Ið Þ ð28Þ

where ϑj is a gene-specific over-dispersion parameter. Note that the scVI model includes additional variables for con-
founding such as library size which are not included here for simplicity (Lopez et al., 2018).

Summary. Without additional modeling assumptions, autoencoders can be considered complex models powered by
black box algorithms. They can be useful for (nonlinear) dimensionality reduction-based tasks but do not yield a
straightforward parametric way of generating new data (Carraro et al., 2020). Due to this limitation, so-called vanilla
autoencoders are not often used in practice (particularly in biomedical applications). The variational autoencoder
improves upon this framework by using scalable inference algorithms to approximate posterior estimates of the model
parameters. By regularizing the distribution over the latent space toward a standard Gaussian, learned generative
models by VAEs can simulate new data by simply generating Gaussian noise and passing it through the decoder func-
tion. A major limitation of VAEs is that they usually rely on fully connected architectures—as a result, the learned
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latent space often lacks a direct interpretation. In addition, latent variables can be “entangled” after training and may
contain correlations with the training data rather than being independent (Radford et al., 2016).

4.4 | Explainable variational autoencoders

VAEs can be considered more interpretable than basic autoencoders due to the standard multivariate Gaussian struc-
ture imposed on their latent space, but these VAE latent spaces are not always directly interpretable and the nonlinear
nature of the decoder can render explainability more challenging (Mathieu et al., 2019). As previously described,
explainable machine learning methods employ auxiliary methods in order to understand the learned model parameters
post hoc. Although the modeling goals of unsupervised learning are different than those of supervised learning, the
objectives and methods of explainable unsupervised learning overlap considerably with explainable supervised learning.
In this section, we will give two examples of explainable autoencoders used in genomics. The first applies feature
importance scores on a standard (non-variational) autoencoder, while the second imposes additional structure on the
VAE framework to increase its explainability (Figure 1f).

Kong et al. (2021) recently applied the DeepLIFT method for computing feature importance scores to a standard
autoencoder and used the resulting gene scores to find a minimal set of genes that can be used to infer the expression
of the genes not included in the minimal set. The goal of this model was to improve upon the L1000 assay, which is a
tool for measuring the expression of 978 “landmark genes,” and using those 978 measurements to infer the expression
of 11,350 additional genes.

Svensson et al. (2020) recently developed the linearly decoded variational autoencoder (LDVAE) model, a class of
autoencoder composed with a neural network encoder and a linear decoder. With the LDVAE model, one can represent
the encoder zi ¼ e xið Þ as the conditional distribution pη zi jxið Þ and the decoder xi ≈Wzi as pη xi jzið Þ, respectively, where
W is a matrix rather than a nonlinear function. Once again, we use η to represent the free parameters in the neural net-
work architecture. Just as in the standard VAE, a successfully trained model achieves a minimized loss function
ℓ xi,Wzið Þ between the original and reconstructed data with the full model taking on the following form

xi j zi �N Wzi,σ2I
� �

, zi �N 0,Ið Þ: ð29Þ

Training again then seeks to maximize the lower bound specified in Equation (27). Note that this is quite similar to
probabilistic PCA (see again Equations (20) and (29)), yet the structure of the latent space is learned jointly and the
encoder can be a flexible nonlinear neural network. This “factor model” is claimed by Svensson et al. to be interpretable
due to its linear nature.

Summary. Explainable autoencoders attempt to overcome the limitations of interpreting the latent space of VAEs
by using model-agnostic feature importance metrics (e.g., DeepLIFT) and by making additional linear or sparse model-
ing assumptions induced by prior knowledge (Shrikumar et al., 2017). Nevertheless, similar to understanding principal
component analysis, interpreting latent factors is a non-trivial task due to the requirement of investigating the meaning
of the factors using domain specific knowledge and post hoc methods to choose important contributing variables.
LDVAE does not have a built-in methodology for explainability, and it must rely on feature importance scores and
other auxiliary methods. As with explainable methods for feedforward neural networks in supervised learning, attempts
can be made to interrogate the internal workings of VAEs using sensitivity scores like relative centrality measures,
DeepLIFT, Shapley Additive Explanations (SHAP), as well as with saliency methods. These explainability methods can
be used to draw conclusions about otherwise black box models but, as with supervised learning, these must be used
carefully as they may lead to users of the model to misinterpreting results (Stites et al., 2021).

4.5 | Interpretable variational autoencoders

To further increase the interpretability of VAEs, biological annotations have been used in order to impose structure in
two models that incorporate a linear decoder like in LDVAE framework (Figure 1g). Seninge et al. (2021) developed the
VAE Enhanced by Gene Annotations (VEGA), which uses a linear decoder that is sparsified using a mask matrix gener-
ated from annotated gene sets. Rybakov et al. (2020) developed an interpretable variational autoencoder that
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incorporates ideas from LDVAE and from f-scLVM, an interpretable latent variable model. In this section, we will focus
on the Rybakov et al. modeling approach. As described in the previous section, we will let the encoder zi ¼ e xið Þ be rep-
resented by the conditional distribution pη zi jxið Þ and the decoder xi ≈Wzi be represented as pη xi jzið Þ. Here, however,
the matrix W is not just a dense matrix that results in a dense layer within a network. Instead, W has three contributing
components:

• Annotated factors that come from gene-set databases. Due to the small number of genes in most gene sets relative to
the total number of genes in an organism, these are typically sparse factors.

• Sparse factors those are unannotated and estimated through regularized inference.
• Dense unannotated and unregularized factors consisting of a large number of genes and estimated through standard

inference.

With this in mind, the full biologically inspired model can be displayed by the following

xi j zi �N Wzi,σ2I
� �

, zi �N 0,Ið Þ W¼ A;S;U½ � ð30Þ

where A represents the annotated factor matrix, S represents the sparse unannotated factor matrix, and U represents
the dense unannotated factor matrix. Model training seeks to minimize the same loss in Equation (27) and parameters
are learned using stochastic gradient descent.

A similar model called the “explainable programmable mapper” (expiMap) by Lotfollahi et al. (2023) also uses a lin-
ear decoder while incorporating biological annotations. Here, the authors additionally developed gene importance
scores, latent score directions, and implement differential testing for gene programs in order to interpret the expiMap
model. The gene importance scores are simply computed as the absolute value of the weight of the gene in a given pro-
gram and the latent score directions are a heuristic used to determine whether a latent variable generally upregulates
or downregulates genes. There are two heuristic measures for assessing how aligned a latent variable is toward up or
down-regulation: one that is count-based and one that is sum-based

γsumj ¼ sign
X
k

wkj

 !
γcountj ¼ sign

X
k

sign wkj
� � !

ð31Þ

where wkj is the weight of the k-th gene in the j-th gene program. Finally, to test the statistical hypotheses H0 : z
að Þ
i > z bð Þ

i

versus H1 : z
að Þ
i ≤ z bð Þ

i , where z að Þ
i and z bð Þ

i are the i-th latent variables for observations in two different groups a and b
(e.g., cases versus controls, different experimental conditions), expiMap computes Bayes factors of the form

BF10 ¼ p DjH1ð Þ
p DjH0ð Þ¼

p H1 jDð Þ
p H0 jDð Þ�

p H0ð Þ
p H1ð Þ ð32Þ

where D¼ X að Þ;X bð Þ� �
is the collective input data from both groups. In practice, these quantities are computed analyti-

cally by assuming a Gaussian distribution over the latent space or approximated via Monte Carlo sampling.
Summary. In contrast to explainable autoencoders, interpretable autoencoders include more rigorous statistical tests

for interpreting their parameters. This includes the strategy of using predefined sparse (or partially connected) architec-
tures that allow users to readily understand the inner workings of the model. In particular, modelers can use annota-
tions that they believe are likely a priori to be related to the problem of interest in order to design a model that can be
probed and interrogated. One weakness that remains is that the current VAE literature solely focuses on the interpreta-
tion of the latent space and typically leaves the encoder and decoder unexamined. To remedy this limitation, users may
use explainability methods as previously described. However, to reiterate, when explainability methods are used they
may lead to conclusions that are divergent from the model itself.

Additional comments. Compared to developments in the field of interpretable supervised methods, the field of inter-
pretable unsupervised methods is still relatively nascent. There are many opportunities for latent space interpretation
by making models probabilistic, developing effect size measures, and performing hypothesis testing. Although we
focused on latent space interpretation here, there are other unsupervised learning tasks to be addressed with more
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explainable and interpretable methods. Recently, there has been criticism of the over-interpretation of UMAP, t-SNE,
and other methods for visualization of high dimensional data (Chari et al., 2021). Finally, a common task is post-
selective inference. This refers to the task of conducting statistical inference after some form of a selective algorithm. In
supervised learning, this refers to conducting statistical inference on estimated parameters determined via regularized
methods like the lasso which, as previously mentioned in the review of supervised learning methods, results in inflated
p-values using classical methods (Taylor & Tibshirani, 2015). In unsupervised learning, it refers to determining differ-
ences between the groups inferred by a clustering algorithm. Due to the fact that the clustering algorithm grouped dis-
similar data into different clusters, it is expected a priori that there are differences between groups and so any p-values
computed by comparing the groups are highly inflated due to “data double dipping” (Gao et al., 2022) resulting in
increased type I error. Methods have been developed for conditioning on the particular selective algorithm used before
hypothesis testing and this is still a highly active area of research (Chen & Witten, 2022; Gao et al., 2022; Neufeld
et al., 2022).

5 | CONCLUSIONS AND FUTURE PERSPECTIVES

In this article, we reviewed the model transparency spectrum from black box machine learning methods to those that
are explainable and interpretable, focusing on supervised and unsupervised approaches in the domain of computational
biology. Where one decides to sit on the model transparency spectrum should depend on the application of interest.
Black box models are effective when the goal is solely to make predictions without the need for understanding how those
predictions were generated. Explainable models have the additional benefit of providing ranked feature lists which are
useful for in silico hypothesis generation and for prioritizing downstream tasks such as determining which genes to
target first in the best next set of experiments. However, in settings with more high-stakes decision-making (e.g., clinical
diagnostics), more interpretable and transparent models are needed (Figure 2) (Hira et al., 2019; Rahman et al., 2019).

(a)

(b)

(c)

FIGURE 2 Interpretable models are essential for downstream decision-making in biomedical and clinical applications. (a) Biological

processes are a series of molecular cascades of interactions between genes and gene products. (b) Such biological hierarchies can be modeled

for example through biologically informed (i.e., partial) connections in supervised learning feed-forward neural networks or through

unsupervised learning autoencoder frameworks. This modeling strategy has been used recently to identify genetic variants significantly

contributing to phenotypic variation as well as to uncover latent structures that govern evolutionary processes among cell types.

(c) Interpretable models move beyond prediction tasks, performing variable selection to generate hypotheses and inform decision-making for

downstream evaluation. Example areas of such applications include ranking genetic variants in fundamental research, deciding which

molecules to test in drug development, and performing clinical intervention. ED, effective dose; R&D, research and development; SNP,

single nucleotide polymorphism.
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In biomedical machine learning, we are observing a shift in the field toward more interpretable frameworks that aim to
mirror the underlying biological structure for the problem of interest. Such methods are valuable when needing to test
against a null hypothesis, calibrate uncertainties, and control for type I error.

Here, we highlight the utility of techniques for developing explainable and interpretable models, albeit with some caveats
(Nie et al., 2018; Sixt et al., 2020). While black box models and their explainable counterparts have proven to be valuable
tools for generating hypotheses and performing prediction-based tasks, it should be noted that explanations may instill a
false sense of confidence in users concerning a model's capabilities, thereby potentially increasing the acceptance of false pos-
itives and negatives (Stites et al., 2021). Indeed, complete assurance of accurate model interpretation is difficult to achieve;
however, moving forward, it is suggested that researchers should seek to expand their focus beyond the interpretability spec-
trum and devise strategies to facilitate the identification of the best next action or recommendation based on model findings
(i.e., providing summaries that are useful for the end user). For example, when aiming to discover novel biomarkers in geno-
mics by employing post hoc methods to understand model behavior or to perform in silico hypothesis testing, one could also
take into account the plausibility wet lab validation experiments or the viability of being targeted by a drug.

There are important caveats to consider when developing interpretable frameworks in biomedical applications. Firstly,
we have recognized the potential power of incorporating known scientific knowledge during model development. Neverthe-
less, just as training data can contain biases, a priori annotations and domain knowledge can also bias what new associations
scientists can discover. Secondly, what makes a model “explainable” or “interpretable” is domain specific, which introduces
nuance and complexity based on contextual evidence. In biomedicine, this can make model evaluation a challenge in most
contexts without performing wet-lab validation in a reproducible manner. One effective way to obtain, integrate, and verify
domain knowledge is through user studies, where the expert is part of the model design and validation processes, sometimes
through interviews or co-design sessions (Lage et al., 2018). Thirdly, human evaluation is crucial for understanding how
machine learning models work and how they can be improved, as it can also introduce biases and inconsistencies if not
done carefully (Herman, 2017; Molnar, 2020; Molnar et al., 2021; Stites et al., 2021). Lastly, the performance of any model is
limited by the quality of the data that it is trained on. In other words, if the input-sequenced genotypes are flawed, any
attempt to explain variation among the output phenotypes may also be compromised. Keeping these points in mind will
enable the careful and robust development of biomedical machine learning across the model transparency spectrum.
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