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Abstract. We show that an embedding in Euclidean space based on tropical geometry generates stable su�cient
statistics for barcodes. In topological data analysis, barcodes are multiscale summaries of algebraic
topological characteristics that capture the “shape” of data; however, in practice, they have complex
structures that make them di�cult to use in statistical settings. The su�ciency result presented in
this work allows for classical probability distributions to be assumed on the tropical geometric rep-
resentation of barcodes. This makes a variety of parametric statistical inference methods accessible
to barcodes, all while maintaining their initial interpretations. More specifically, we show that expo-
nential family distributions may be assumed and that likelihood functions for persistent homology
may be constructed. We conceptually demonstrate su�ciency and illustrate its utility in persistent
homology dimensions 0 and 1 with concrete parametric applications to human immunodeficiency
virus and avian influenza data.
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1. Introduction. In this paper, we provide statistical su�ciency in Euclidean space for
persistent homology—an important concept in the field of topological data analysis (TDA)
that summarizes the “shape” and “size” of data. Our result is based on a topological
embedding given by functions defined in tropical geometry. With these su�cient summaries,
probability distributions from classical statistics may be applied to persistent homology.
More importantly, extensive statistical methodology and parametric inference have become
accessible to TDA.

Recently, TDA has become particularly relevant due to its theoretical foundations that
allow for dimensionality reduction with qualitative and robust summaries of observed data.
To this end, it is applicable to a wide range of complex data structures arising in various
domains of data science. Persistent homology is an important topological invariant upon
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which many TDA methods depend when applied in practice [91]. Specifically, this method has
been used to address problems in fields ranging from sensor networks [2, 41], medicine [5, 36],
neuroscience [23, 27, 42], as well as imaging analysis [72].

The output of persistent homology is a collection of intervals (known as barcodes, or persis-
tence diagrams, in their representation as points on a plane) rather than numerical quantities.
This has made it di�cult to apply the method to parametric data analysis. Recently, there
have been substantial advancements in applied topology to bypass this issue. More recent
work entails developing statistical methodology and machine learning algorithms to work di-
rectly with barcodes and persistence diagrams. Examples of these include confidence sets
separating topological noise from topological signal on a persistence diagram [34]; a positive-
definite multiscale kernel for persistence diagrams [75]; and an input layer to deep neural
networks to take in persistence diagrams directly [48]. An alternative approach entails ma-
nipulating barcodes so that they may be integrated into existing computational machinery,
predominantly by vectorization, which is the focus of this paper. Various such techniques
have been developed with specific properties depending on the goal of the study. A notable
example is the persistence landscape, which assigns functions directly to barcodes and pro-
duces elements in Banach space [15]. The persistence landscape was then generalized to the
persistence silhouette in [21], and to the kernel-smoothed persistence intensity function in [22],
for statistical analyses such as clustering and weak convergence of bootstrapped persistence
summaries. Additionally, feature representations are constructed in [19] by rearranging entries
of a distance matrix between points in a persistence diagram. Another approach proposed
in [11] uses binning to obtain a vector representation of features (though there are concerns
of stability). Similar methods where stable surfaces of persistence diagrams are constructed,
based on kernel methods, with the aim of incorporating persistence information into support
vector machines and other machine learning algorithms are studied in [75], [57], and [3]. Per-
sistence information may also be integrated as vectors into functional regression models via
topological summary statistics based on Euler characteristics [25].

Summary statistics are relevant to the notion of su�ciency, which is a desirable property in
studies centered on inference. Su�ciency allows a given sample of data to be mapped to a less
complex or lower dimensional space (i.e., harboring less computational burden) without the
loss of information [9]. Moreover, su�cient statistics provide the functional form of probability
distributions via a classical factorization criterion. In other words, they represent the key basis
for complete parametric inference in statistics. Summary statistics have been explored in the
context of persistent homology to study shapes and surfaces (closed, compact subsets) in [84]:
specifically, persistence diagrams were used to summarize and compare heel bones of various
species of primates. Their construction provided a notion of summary statistics for the family
of probability distributions on shapes and surfaces in 2 and 3 dimensions, in the space of
persistence diagrams. Perhaps more importantly, this e↵ort also shed light on the possibility
of proving statistical su�ciency in the context of topological analyses of data.

The main contribution of our work is to provide statistical su�ciency for the general fam-
ily of probability measures on persistent homology. A fundamental observation that makes
this result possible is the formal probabilistic characterization of both the domain (i.e., the
space of barcodes) and codomain (i.e., Euclidean space) of our mapping [63]. In principle,
inference should proceed from a probability model defined directly on the barcodes. However,D
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this type of specification is complicated due to the complex geometry of the set of all bar-
codes. Given su�cient statistics for barcodes, we may use the likelihood principle to proceed
with parametric inferences directly. As has been recently demonstrated, this suggests that a
generative or sampling model on barcodes is possible in persistent homology [7].

The remainder of this paper is organized as follows. In section 2, we give a formal defini-
tion of persistent homology and outline the approach to map persistence barcodes to vectors
using functions defined via tropical geometry. We also discuss properties of these functions. In
section 3, we provide our main result of su�cient statistics for persistence barcodes. Based on
this result, we give the form of an exponential family of probability distributions and likelihood
functions for persistent homology. Section 4 gives two concrete applications to data in dimen-
sions 0 and 1. The first is a practical demonstration of su�ciency based on human immunod-
eficiency virus (HIV) data, while the second shows how a parametric assumption statistically
quantifies the biological distinction between intra- and intersubtype reassortment in avian
influenza. We end the paper with a discussion in section 5 with directions for future research.

2. Persistent homology and vectorization. In this section, we give the mathematical
background to our main result. We provide details on the space of barcodes arising from
persistent homology and describe the construction of tropical coordinates on the space of
persistence barcodes.

2.1. The space of persistence barcodes. Homology groups were developed in classical
topology to “measure” the shape of spaces by abstractly counting the occurrences of patterns,
such as the number of connected components, loops, and voids in 3 dimensions. The primary
data analytic utility of persistent homology or persistence [32, 39, 91]—an important concept
from TDA that is heavily leveraged in many data applications—is the adaptation of classical
homology to point clouds (i.e., finite metric spaces), which is often the form in which data
are collected. Persistence, as a topological construct, produces a robust summary of the data
that is invariant to noisy perturbations [24]. Moreover, it also captures integral geometric
features (“size”) of the data. We now describe the construction of homology and its extension
to persistent homology.

Simplicial homology and persistence. Simplicial homology studies the shape of simplicial
complexes, which can be seen as skeletal representations of data types. An example of a
simplicial complex is a mesh, which can be viewed as a discretization of an image. Simplicial
complexes are an important building block in computing persistent homology: an abstract
simplicial complex is a collection K of nonempty subsets of a set K0 such that ⌧ ⇢ � and
� 2 K guarantees that ⌧ 2 K. The elements of K0 are called vertices of K, and the elements �
of K are called simplices. A simplex � has dimension k, or is a k-simplex, if it has cardinality
k + 1.

Simplicial homology is constructed by considering simplicial k-chains, which are linear
combinations of k-simplices in finite K over a field F. A set of k-chains defines a vector space
Ck(K). When F is the binary field Z/2Z, the boundary map is

@k : Ck(K) ! Ck�1(K),

@k

�
[v0, v1, . . . , vk]

�
=

kX

i=0

[v0, . . . , v�i, . . . , vk]D
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with linear extension, where v�i indicates that the ith element has been dropped. Boundaries
are elements of Bk(K) = im @k+1, and cycles are elements of Zk(K) = ker @k.

Definition 2.1. The kth homology group of K is given by the quotient group

Hk(K) := Zk(K)/Bk(K).

The motivating idea underlying homology is to account for the structure of K, which is
a finite simplicial complex representation of a topological space X. In dimension 0, elements
representing connected components of X with finite simplicial complex representation K gen-
erate the zeroth homology group H0(X). If, for example, X has two connected components,
then H0(X) ⇠= F � F (where ⇠= denotes group isomorphism, and � here denotes the direct
sum). For higher dimensions k � 1, k-dimensional holes are the result of considering the
boundary of a (k + 1)-dimensional object. Hk(X) is generated by elements that represent
k-dimensional holes in X. The rank of the kth homology group is denoted by �k and referred
to as the kth Betti number.

Intuitively, persistent homology is computed by tracking the progression of connected
components, loops, and higher dimensional voids, with respect to a filtration assigned to
the observed point cloud. A filtration is a finite nested sequence of simplicial complexes
K := {Kr}tr=0 indexed by a parameter r 2 R+ such that Kr1 ✓ Kr2 if r1 < r2.

Definition 2.2. Let K be a filtered simplicial complex K0 ⇢ · · · ⇢ Kt = K. The kth
persistence module derived in homology, or simply kth persistent homology, of K is given by

PHk(K) :=
�
Hk(Kr)

 
0rt

together with the collection of linear maps {'r,s}0rst, where 'r,s : Hk(Kr) ! Hk(Ks) is

induced by the inclusion maps of Kr ,! Ks for all r, s 2 [0, t] such that r  s.

Persistent homology contains the homology information on individual spaces {Kr} and
on the mappings between their homologies for every Kr and Ks, where r  s. Note that the
motivating idea underlying persistent homology is to account for the homology of X simul-
taneously across multiple scales. Rather than restricting the analysis to one static instance,
persistence tracks how the topological structure evolves over the indexed filtration. The final
output after computing persistence is a barcode (i.e., a collection of intervals). Each interval
(or bar) corresponds to a topological feature that appears (i.e., birth) at the value of a param-
eter given by the left endpoint of the interval, and disappears or merges with another existing
feature (i.e., death) at the value given by the right endpoint. Figure 1 provides an illustrative
example of persistent homology.

Barcodes and persistence diagrams. For a given dimension k, a barcode consisting of n

intervals, obtained from computing the kth persistent homology, can be written as a collec-
tion (x1, d1, x2, d2, . . . , xn, dn), where xi is the left endpoint of the ith interval and di is its
length. In this paper, we assume that xi � 0, thus meaning that the birth times of bars are
nonnegative. Notice that the order in which coordinates (xi, di) appear within the collection
(x1, d1, x2, d2, . . . , xn, dn) does not a↵ect the content of the topological information encoded in
the barcode. Hence, the indices i = 1, 2, . . . , n are essentially dummy variables. This means
that all permutations of the coordinates (xi, di) across n positions define the same collection.D
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Figure 1. Example illustrating persistent homology. This figure originally appears in [40]. Here, 17 points
are sampled from an annulus with topology given by �0 = 1, �1 = 1, and �2 = 0. Simplicial complexes are
computed for continuous values of the filtration parameter, ✏ 2 [0,1). The filtration is illustrated in the upper
panels as the evolution of a simplicial complex in terms of vertices, edges, and faces that are formed as the value
of ✏ increases. H0 homology captures connected components; H1 captures cycles whose boundaries are formed
by edges between vertices; and H2 captures cycles with boundaries formed by faces. The dashed lines extending
from the panels at instances of the filtration connect to the bars representing the topological features that exist at
the corresponding values of ✏. As ✏ progresses, connected components merge, cycles form and then fill up. The
barcode summarizes this progression of ✏ by tracking the “lifetimes” of all topological features according to their
homology groups. Notice that there is a single H0 bar that persists as ✏ ! 1, representing the single connected
component of the annulus. There are several bars of varying length in H1, including dominant bars, suggesting
that the point cloud was unevenly sampled from the annulus in such a way that the sample space contains holes.
Also, there is a single H2 bar representing the cycle bounded by faces in the corresponding panel, but the length
of the bar is comparatively short and likely to be a spurious topological artefact.

Algebraically, this amounts to taking the orbit space of the action of the symmetric group on
n letters on the product

�
[0,1) ⇥ [0,1)

�n
, given by permuting the coordinates. We denote

this orbit space by Bn.

Definition 2.3. The barcode space Bn consisting of bars with at most n intervals is given

by the quotient a

n2Nn

Bn/⇠,

where ⇠ is generated by equivalences of the form

�
(x1, d1), (x2, d2), . . . , (xn, dn)

 
⇠
�
(x1, d1), (x2, d2), . . . , (xn�1, dn�1)

 
,

whenever dn = 0.D
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We may set yi := xi + di to be the right endpoint of the ith interval, and equivalently
consider the collection of ordered pairs (xi, yi) together with the diagonal � = {(x, y) |
x = y}, where each point is taken with infinite multiplicity. Here, � contains the bars
of length zero (i.e., features that are born and die at exactly the same time and therefore
have zero persistence). Plotting these ordered pairs on a scatterplot, we obtain an alternate
representation of the barcode, known as a persistence diagram.

Metrics on barcode space. The space of barcodes can be equipped with various measures
of distance, which, under mild regularity conditions (namely, local finiteness of barcodes or
persistence diagrams), are also metrics. In this paper, we consider the bottleneck and Wasser-
stein distances, which are the distance functions used in many existing results in the field
of TDA. In particular, the stability theorem [24], which provides a foundation that makes
persistent homology applicable to real data analysis, is stated with respect to the bottleneck
distance. Unless explicitly stated otherwise, all results in this paper hold in generality for the
Wasserstein p-distance for all p � 1, as well as the bottleneck distance.

The first step in specifying the distance between any two barcodes is to define the distance
between any pair of intervals, as well as the distance between any interval and the set of zero
length intervals �. We take

d1
�
(xi, di), (xj , dj)

�
= max

�
|xi � xj |, |di � dj + xi � xj |

 

to be the distance between barcodes {(xi, di)} and {(xj , dj)}. The distance between an interval
(x, d) and the set � is

d1
�
(x, d),�

�
=

d

2
,

which is simply the minimal d1 distance between (x, x + d) and �. Now let B1 = {I↵}↵2A
and B2 = {J�}�2B be two barcodes.

Definition 2.4. For a fixed p, finite sets A and B, any bijection � from a subset A
0 ✓ A to

B
0 ✓ B, and a penalty on � set to

Pp(�) :=
X

a2A0

d1

�
Ia, J�(a)

�p
+

X

a2A\A0

d1

�
Ia,�

�p
+

X

b2B\B0

d1

�
Ib,�

�p
,

the Wasserstein p-distance (p � 1) between B1 and B2 is given by

d
W
p (B1,B2) :=

⇣
min
�

Pp(�)
⌘ 1

p
.

Definition 2.5. For finite subsets and sets A
0 ✓ A and B

0 ✓ B, a bijection � as previously

defined above, and a penalty on � set to

P1(�) := max

⇢
max
a2A0

⇣
d1

�
Ia, J�(a)

�⌘
, max

a2A\A0
d1(Ia,�), max

b2B\B0
d1(Ib,�)

�
,

the quantity

d
B
1(B1,B2) := min

�
P1(�),

defines the bottleneck distance between B1 and B2, where the minimum is again taken over

all bijections from subsets A
0
to B

0
.D
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Barcodes and data. In applications, data are generated by random processes and thus their
representation as simplicial complexes and their resulting barcodes are also considered to be
random objects. Barcodes can therefore be seen as summary statistics of the data generating
process because they allow for a dimensionality reduction of the ambient space. Therefore, in
a broader and more philosophical sense, topological approaches in data science applications
can be used to provide sets of principal variables for scalable inference. In practice, however,
estimating persistent homology is subject to the curse of dimensionality, since it amounts to
statistically estimating pairwise correspondences of sets in Hausdor↵ distance.

2.2. Coordinates on the space of persistence barcodes. To integrate shape information
of data (via barcodes) into existing computational machinery and methodology, several vec-
torization techniques have been proposed. The vectorization that [51] proposes takes the form
of functions, which we build upon and extend to statistical theory in this paper.

For the goal of relating persistent homology to statistical theory, studying functional
vectorization techniques is preferable to studying algorithmic vectorization, because specific
properties relevant to statistical inference, such as injectivity and measurability, are assessed
on functions rather than algorithms. In addition to the vectorization of [51], there are other
vectorization approaches based on the identification of polynomials or functions. For example,
complex polynomials (where the points of a persistence diagram are the roots) have been
developed in [35]; however, these are di�cult to apply to parametric statistical analysis where
data are primarily real-valued. Persistence landscapes in [15] are also less natural for statistical
inference due to certain characteristics of Banach space (for example, the fact that norms on
Banach space need not comprise an inner product structure).

Another particularly relevant approach by [4] assigns vectors directly to barcodes by defin-
ing a ring of algebraic functions. These functions are polynomials and satisfy desirable proper-
ties such as symmetry in the variables (i.e., invariance of ordering of the bars), and invariance
under addition of 0-length intervals. Unfortunately, it turns out that these functions are not
Lipschitz with respect to the Wasserstein p- and bottleneck distances (see Appendix A for
a proof). This lack of Lipschitz continuity is problematic in real data applications that are
generated by random processes because of its negative implications on stability in the target
space under perturbations in the domain. More specifically, there are no guarantees that the
transformation is computationally or statistically robust. As a viable solution to address such
shortcomings of these formerly defined polynomials in [4], tropical functions on the space of
barcodes were identified. These tropical functions possess the same desirable properties as
those developed by [4], but additionally, were shown to be Lipschitz (and therefore continuous)
with respect to the Wasserstein p-distance for p � 1 and the bottleneck distance [51].

We now briefly review the definition of the tropical semiring and the tropical functions
that we study as coordinates on barcode space.

Fundamentals of tropical algebra. Tropical algebra is a branch of mathematics based on the
study of the tropical semiring.

Definition 2.6. The tropical (equivalently, min-plus) semiring is (R [ {+1},�,�), with

addition and multiplication being defined as

a� b := min(a, b) and a� b := a+ b,D
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where both operations are commutative and associative, and multiplication distributes over

addition. Similarly, there exists the max-plus semiring, (R[{�1},�,�), where multiplication

of two elements is defined as in the case of the tropical semiring, but addition amounts to taking

the maximum instead of the minimum. Namely,

a� b := max(a, b) and a� b := a+ b,

where again both operations are associative, commutative, and distributive as in the tropical

semiring.

As in the case of ordinary polynomials that are formed by multiplying and adding real vari-
ables, max-plus polynomials can be formed in a similar fashion as follows. Let x1, x2, . . . , xn
be variables that are elements in the max-plus semiring. A max-plus monomial expression is
any product of these variables, where repetition is permitted. By commutativity, we can sort
the product and write monomial expressions with the variables raised to exponents:

p(x1, x2, . . . , xn) = a1 � x
a11
1 x

a12
2 · · ·xa1nn � a2 � x

a21
1 x

a22
2 · · ·xa2nn � · · ·� am � x

am1
1 x

am2
2 · · ·xamnn

= max(a1 + a
1
1x1 + · · ·+ a

1
nxn, . . . , am + a

m
1 x1 + · · ·+ a

m
n xn).

Here, the coe�cients a1, a2, . . . , am are in R, and the exponents a
i
j are in Z+ for 1  j  n

and 1  i  m. Max-plus polynomial expressions do not uniquely define functions (e.g., [18]),
which suggests an equivalence relation. For max-plus polynomial expressions p and q, if

p(x1, x2, . . . , xn) = q(x1, x2, . . . , xn)

for all (x1, x2, . . . , xn) 2 (R[{+1})n, then p and q are said to be functionally equivalent, and
we write p ⇠ q. Max-plus polynomials are the semiring of equivalence classes for max-plus
polynomial expressions with respect to ⇠.

Identifying tropical functions for barcodes. We now give a list of tropical functions that
we use to assign vectors to barcodes, restate existing relevant results, and prove additional
statements necessary for our main result (see Theorem 3.5 in section 3). For a complete
discussion on the construction of the functions, and proofs related to the original definitions
of the tropical functions, see the relevant previous works: [18] and [51].

Fix n and let the symmetric group Sn act on the following matrix of indeterminates by
left multiplication:

X =

0

BBB@

x1,1 x1,2

x2,1 x2,2
...

...
xn,1 xn,2

1

CCCA
.

Here, the matrix X represents a barcode with n bars, where each bar is represented by a row.
As previously mentioned, the action of Sn on X amounts to permuting the order of the bars
within (x1, d1, x2, d2, . . . , xn, dn). In parallel, also consider the collection of exponent matrices

En =

8
>>><

>>>:

0

BBB@

e1,1 e1,2

e2,1 e2,2
...

...
en,1 en,2

1

CCCA
6= [0]2n | ei,j 2 {0, 1} for i = 1, 2, . . . , n, and j = 1, 2

9
>>>=

>>>;
.
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A matrix E 2 En, together with X, determines a max-plus monomial by

P (E) = x
e1,1
1,1 � x

e1,2
1,2 � · · ·� x

en,1

n,1 � x
en,2

n,2 .

Now, denote the set of orbits under the row permutation action on En by En/Sn. Each orbit
{E1, E2, . . . , Em} determines an elementary 2-symmetric max-plus polynomial by

P (E1)� P (E2)� · · ·� P (Em).

Let E(e1,1,e1,2),(e2,1,e2,2),...,(en,1,en,2) denote the polynomial that arises from the orbit

2

6664

0

BBB@

e1,1 e1,2

e2,1 e2,2
...

...
en,1 en,2

1

CCCA

3

7775
.

Example 2.7. Let n = 3. Here are a few examples of elementary 2-symmetric max-plus
polynomials:

E(0,1),(0,1),(0,0)(x1, d1, x2, d2, x3, d3) = d1 � d2 � d1 � d3 � d2 � d3

= max(d1 + d2, d1 + d3, d2 + d3),

E(0,1),(0,0),(0,1)(x1, d1, x2, d2, x3, d3) = d1 � d2 � d1 � d3 � d2 � d3

= max(d1 + d2, d1 + d3, d2 + d3),

E(1,1),(1,1),(1,1)(x1, d1, x2, d2, x3, d3) = x1 � d1 � x2 � d2 � x3 � d3

= x1 + d1 + x2 + d2 + x3 + d3.

In the example above, the first two polynomials are equivalent: E(0,1),(0,1),(0,0) is the
same function as E(0,1),(0,0),(0,1), which in turn is the same as E(0,0),(0,1),(0,1). Thus, only n

and the number of (0, 1) rows are needed to determine the 2-symmetric polynomial in this
example. Since we know n, we may therefore simplify notation by writing this polynomial
as E(0,1)2 instead of listing every row. This is the notational convention that we will adopt
throughout the rest of the paper. Namely, whenever n is known, we write E(e1,1,e1,2),...,(en,1,en,2)

as E(1,0)k,(0,1)i,(1,1)j—where among (e1,1, e1,2), (e2,1, e2,2), . . . , (en,1, en,2), k is the number of
(1, 0) rows, i the number of (0, 1) rows, and j the number of (1, 1) rows. The number of (0, 0)
rows is what remains (i.e., n � i � j � k), which we omit from the notation. If we wish to
emphasize the value of n, we write E

n
(1,0)k,(0,1)i,(1,1)j .

These functions are the building blocks for the functions we use to vectorize the bar-
code space. Proposition 5.8 of [18] asserts that E(0,1)i,(1,1)j ,(1,0)k separate orbits under the

row permutation action on R2n. In other words, if B1 6= B2, then {i, j, k} exist such that
E(0,1)i,(1,1)j ,(1,0)k(B1) 6= E(0,1)i,(1,1)j ,(1,0)k(B2). We improve this statement and show that the
two-parameter family of E(0,1)i,(1,1)j , parameterized by i and j alone, su�ces to separate the
barcodes, and that the k-factor of (1, 0) rows is not needed. This is an important result, as it
enables us to embed the barcode space into a lower-dimensional Euclidean space, and hence
tightens the main su�ciency result of this paper. We now formalize this fact in the following
proposition.D
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Proposition 2.8. Let
⇥
(x1, d1, x2, d2, . . . , xn, dn)

⇤
and

⇥
(x01, d

0
1, x

0
2, d

0
2, . . . , x

0
n, d

0
n)
⇤
be two or-

bits under the row permutation action on R2n
. If

E
n
(0,1)i,(1,1)j

⇥
(x1, d1, x2, d2, . . . , xn, dn)

⇤
= E

n
(0,1)i,(1,1)j

⇥
(x01, d

0

1, x
0

2, d
0

2, . . . , x
0

n, d
0

n)
⇤

for all i, j  n, then

⇥
(x1, d1, x2, d2, . . . , xn, dn)

⇤
=
⇥
(x01, d

0

1, x
0

2, d
0

2, . . . , x
0

n, d
0

n)
⇤
.

In other words, E
n
(0,1)i,(1,1)j separates barcodes.

Proof. We prove the statement by induction on the number of nonzero bars  n. If n = 1,
then E

1
(0,1)

⇥
(x1, d1)

⇤
= E

1
(0,1)

⇥
(x01, d

0
1)
⇤
implies that d1 = d

0
1, and (E1

(0,1) � E
1
(1,1))

⇥
(x1, d1)

⇤
=

(E1
(0,1)�E

1
(1,1))

⇥
(x01, d

0
1)
⇤
implies that x1 = x

0
1. From here it follows that [(x1, d1)] = [(x01, d

0
1)],

and the base case holds.
Now suppose that En�1

(0,1)i,(1,1)j for nonnegative integers i, j, where i+ j  n� 1, separates

barcodes with up to (n� 1) nonzero bars. We must show that En
(0,1)i(1,1)j separates barcodes

with up to n bars. Let B1 = [(x1, d1, . . . , xn, dn)] and B2 = [(x01, d
0
1, . . . , x

0
n, d

0
n)] be two

barcodes with up to n nonzero bars. Assume without loss of generality that x1  x2  · · ·  xn

and x
0
1  x

0
2  · · ·  x

0
n. We furthermore arrange that for all i  n � 1 with xi = xi+1, we

have di  di+1.
If En

(0,1)(B1) = E
n
(0,1)(B2), it follows that max1in di = max1in d

0

i. Since

E
n
(0,1)2(B1)� E

n
(0,1)1(B1) = E

n
(0,1)2(B2)� E

n
(0,1)1(B2),

it follows that the second greatest element in {di | 1  i  n} is equal to the second greatest
element in {d0i | 1  i  n}. We apply this reasoning to the remaining elements in decreasing
order and finally obtain {di | 1  i  n} = {d0i | 1  i  n}.

The fact that xn equals x0n follows by applying E
n
(0,1)n�1,(1,1)1 . Computing the di↵erence

E
n
(0,1)n�2,(1,1)2 � E

n
(0,1)n�1,(1,1)1

yields xn�1 = x
0
n�1. We continue in this manner and finally arrive at the conclusion that

{x1, x2, . . . , xn} is a permutation of {x01, x02, . . . , x0n}. This means that unless
⇥
(x1, d⇡(1), . . . , xn, d⇡(n))

⇤
=
⇥
(x1, d1, . . . , xn, dn)

⇤

for some permutation ⇡, one of the functions among E
n
(0,1)i,(1,1)j separates B1 and B2.

Assume now that we have such a ⇡ where
⇥
(x1, d⇡(1), . . . , xn, d⇡(n))

⇤
=
⇥
(x1, d1, . . . , xn, dn)

⇤
.

Let I = {k 2 {1, 2, . . . , n} | dk > d⇡(n)}. Using the fact that x1  x2  · · ·  xn, we evaluate
E

n
(0,1)|I|,(1,1)

, where |I| is the cardinality of I:

E
n
(0,1)|I|(1,1)

�⇥
(x1, d⇡(1), . . . , xn, d⇡(n))

⇤�
= xn + d⇡(n) +

X

k2I

dk.

After splitting the index set according to membership in I, we arrive at

E
n
(0,1)|I|,(1,1)

�⇥
(x1, d1, . . . , xn, dn)

⇤�
= max

✓
max
`/2I

✓
x`+

X

k2I

dk+d`

◆
, max

`2I

✓
x`+

X

k2I

dk+d⇡(n)

◆◆
.
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So if dn < d⇡(n), then also dn�i, dn�i+1, . . . < d⇡(n), which implies that n�i, n�i+1, . . . , n /2 I.
Thus if ` /2 I, then there are two cases. First, ` < n�i, in which case x`+d`  xn�i�1+d⇡(n) <

xn + d⇡(n), giving the inequality

E
n
(0,1)|I|,(1,1)

�⇥
(x1, d1, . . . , xn, dn)

⇤�
< E

n
(0,1)|I|,(1,1)

�⇥
(x1, d⇡(1), . . . , xn, d⇡(n))

⇤�
.

Second, if n� i  `  n, then x` + d` = xn + d` < xn + d⇡(n) again. As for the second max, if
` 2 I, then necessarily ` < n� i, so x` + d⇡(n) < xn + d⇡(n). A symmetrical argument shows
that one can distinguish between the barcodes with E

n
(0,1)|I|,(1,1)

, where I = {k 2 {1, 2, . . . , n} |
dk > dn} if dn > d⇡(n). So unless the maximal x values are not matched with the same d values
in B1 and B2, we can distinguish the barcodes using elementary 2-symmetric polynomials.

Now suppose that x0n = xn and d
0
n = dn. We show using the inductive hypothesis that if

B1 \ {(xn, dn)} 6= B2 \ {(xn, dn)},

then we can distinguish B1 and B2 by elementary 2-symmetric polynomials in 2n variables,
which we construct from elementary 2-symmetric polynomials in 2(n� 1) variables. By sym-
metry between B1 and B2, we may assume that there exist i and j such that

E
n�1
(0,1)i,(1,1)j

�
B1 \ {(xn, dn)}

�
> E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
.

Note that En�1
(0,1)i,(1,1)j (Bk \ {(xn, dn)})  E

n
(0,1)i,(1,1)j (Bk) for k = 1, 2.

If En
(0,1)i,(1,1)j (B1) 6= E

n
(0,1)i,(1,1)j (B2), we are done, since we have a function that separates

the two barcodes. If En�1
(0,1)i,(1,1)j (B2 \ {(xn, dn)}) = E

n
(0,1)i,(1,1)j (B2), then

E
n
(0,1)i,(1,1)j (B1) > E

n
(0,1)i,(1,1)j (B2)

and thus En
(0,1)i,(1,1)j distinguishes B1 and B2. It then su�ces to study the situation when

E
n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
< E

n
(0,1)i,(1,1)j (B2).(2.1)

In this situation E
n
(0,1)i,(1,1)j must depend on at least dn or xn (or possibly both). Then in the

partition I, J such that

E
n
(0,1)i,(1,1)j (B2) =

X

j2J

(xj + dj) +
X

i2I

di,(2.2)

either n 2 I or n 2 J .
First we suppose that n 2 J . We prove that then

E
n
(0,1)i,(1,1)j+1(B2) = xn + dn + E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
.

A short consideration of the fact that we have three possibilities (either xn plays a role in
the sum that equals E

n
(0,1)i,(1,1)j+1(B2); or xn + dn; or neither appears in the sum) gives the

following fact:D
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E
n
(0,1)i,(1,1)j+1(B2) = max

⇣
xn + dn + E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
,

dn + E
n�1
(0,1)i�1,(1,1)j+1

�
B2 \ {(xn, dn)}

�
,

E
n�1
(0,1)i,(1,1)j+1

�
B2 \ {(xn, dn)}

�⌘
.

We must show that this maximum cannot be attained in the second or third expression. We
prove this statement by contradiction.

• Assume that En
(0,1)i,(1,1)j+1(B2) = E

n�1
(0,1)i,(1,1)j+1(B2 \{(xn, dn)}). This means that I1, J1

exist such that

E
n
(0,1)i,(1,1)j+1(B2) =

X

j2J1

(xj + dj) +
X

i2I1

di(2.3)

and n /2 I1 [ J1. Also, s exists such that s 2 J1 [ I1 \ J [ I.
Assume that s 2 J1. If xs + ds > xn + dn, then

X

j2J[{s}\{n}

(xj + dj) +
X

i2I

di >
X

j2J

(xj + dj) +
X

i2I

di,

which contradicts the definition of En
(0,1)i,(1,1)j+1(B2). If xs + ds = xn + dn, then

X

j2J[{s}\{n}

(xj + dj) +
X

i2I

di =
X

j2J

(xj + dj) +
X

i2I

di = E
n
(0,1)i,(1,1)j (B2).

The sum on the left does not involve n, which would imply that

E
n
(0,1)i,(1,1)j (B2) = E

n�1
(0,1)i,(1,1)j (B2 \ {(xn, dn)}),

contradicting (2.1). Now suppose xs + ds < xn + dn. Then

X

j2J1[{n}\{s}

(xj + dj) +
X

i2I1

di >
X

j2J1

(xj + dj) +
X

i2I1

di,

which contradicts (2.3).
Now assume that s 2 I1. Since s 2 I1 and not in I, and since I and I1 have the same

cardinality, there exists t 2 I \I1. If ds = dt, we replace t with s (s /2 I[J , so this replacement
is possible) and start over with I replaced by I [ {s} \ {t}, beginning with (2.2). The key
observation is that this replacement reduces the number of elements in I1 \I by 1. Thus, after
at most |I| such replacements, we may either assume that I = I1, in which case our element
s 2 J1 [ I1 \ J [ I necessarily lies in J1 and our previous arguments prove the assertion; or we
reach the situation that I 6= I1, and there exist s 2 I1 \ (I [ J) and t 2 I \ I1 with ds 6= dt.

If ds > dt, we arrive at a contradiction to (2.2), since

X

j2J

(xj + dj) +
X

i2I[{s}\{t}

di >
X

j2J

(xj + dj) +
X

i2I

di.
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Now suppose that ds < dt. If t /2 J1, then we replace s by t and arrive at a contradiction,
since X

j2J1

(xj + dj) +
X

i2I1[{t}\{s}

di >
X

j2J1

(xj + dj) +
X

i2I1

di.

We also must have that

(xn + dn) + dt � (xt + dt) + ds.(2.4)

Otherwise, X

j2J[{t}\{n}

(xj + dj) +
X

i2I[{s}\{t}

di >
X

j2J

(xj + dj) +
X

i2I

di,

which leads to a contradiction to (2.2). If t 2 J1, we use (2.4) to obtain
X

j2J1[{n}\{t}

(xj + dj) +
X

i2I1[{t}\{s}

di �
X

j2J1

(xj + dj) +
X

i2I1

di.

Now we can replace t with n to obtain

E
n
(0,1)i,(1,1)j+1(B2) = xn + dn + E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
.

• Assume that E
n
(0,1)i,(1,1)j+1(B2) = dn + E

n�1
(0,1)i�1,(1,1)j+1(B2 \ {(xn, dn)}). This means

that I1, J1 exist such that

E
n
(0,1)i,(1,1)j+1(B2) =

X

j2J1

(xj + dj) +
X

i2I1

di + dn(2.5)

and n /2 I1 [ J1. Take any s 2 J1. Since xn � xs, we have (xn+ dn)+xs � (xs+ ds)+xn and
we may switch s and n to get

X

j2J1[{n}\{s}

(xj + dj) +
X

i2I1

di + ds �
X

j2J1

(xj + dj) +
X

i2I1

di + dn,

and because the right hand side is maximal,
X

j2J1[{n}\{s}

(xj + dj) +
X

i2I1

di + ds =
X

j2J1

(xj + dj) +
X

i2I1

di + dn,

and consequently

dn + E
n�1
(0,1)i�1,(1,1)j+1

�
B2 \ {(xn, dn)}

�
= dn + xn + E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
.

So if En
(0,1)i,(1,1)j+1(B2) = dn + E

n�1
(0,1)i�1,(1,1)j+1(B2 \ {(xn, dn)}), then also

E
n
(0,1)i,(1,1)j+1(B2) = dn + xn + E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
.

We have just proved that En
(0,1)i,(1,1)j+1(B2) = xn+ dn+E

n�1
(0,1)i,(1,1)j (B2 \ {(xn, dn)}). We

use this fact in the first line (2.6) of the following computation. The second line (2.7) uses the
inductive hypothesis and the last line (2.8) follows from the definition of the functions we use:D

ow
nl

oa
de

d 
06

/0
3/

19
 to

 1
38

.1
6.

12
8.

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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E
n
(0,1)i,(1,1)j+1(B2) = xn + dn + E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
,(2.6)

< xn + dn + E
n�1
(0,1)i,(1,1)j

�
B1 \ {(xn, dn)}

�
,(2.7)

 E
n
(0,1)i,(1,1)j+1(B1).(2.8)

Now suppose that n 2 I. Analogously to the previous example, we will first prove that

E
n
(0,1)i+1,(1,1)j (B2) = dn + E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
.

Once again, we have E
n
(0,1)i+1,(1,1)j (B2) is the maximum over the following three expressions:

E
n
(0,1)i+1,(1,1)j (B2) = max

⇣
xn + dn + E

n�1
(0,1)i+1,(1,1)j�1

�
B2 \ {(xn, dn)}

�
,

dn + E
n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�
,

E
n�1
(0,1)i+1,(1,1)j

�
B2 \ {(xn, dn)}

�⌘
.

We must show that this maximum cannot be attained in the first or third expression. We
prove this statement by contradiction.

Recall the following expression from (2.2):

E
n
(0,1)i,(1,1)j (B2) =

X

j2J

(xj + dj) +
X

i2I

di.

Here n 2 I. By our current assumption, we can write

E
n
(0,1)i+1,(1,1)j (B2) =

X

j2J1

(xj + dj) +
X

i2I1

di,

where n 2 J1. Note that this only makes sense if J1 6= ; (otherwise xn+ dn will not appear in
the sum). Since n 2 J1 \ J , we can pick t 2 J \ J1. Since (xt + dt) + dn  (xn + dn) + dt, we
can rewrite

P
j2J(xj + dj)+

P
i2I di as

P
j2J[{n}\{t}(xj + dj)+

P
i2I[{t}\{n} di and we would

be in the situation which we previously analyzed.

• Assume that E
n
(0,1)i+1,(1,1)j (B2) = E

n�1
(0,1)i+1,(1,1)j (B2 \ {(xn, dn)}). Recall again the fol-

lowing expression from (2.2):

E
n
(0,1)i,(1,1)j (B2) =

X

j2J

(xj + dj) +
X

i2I

di,

where n 2 I. Additionally, we can write E
n
(0,1)i+1,(1,1)j (B2) =

P
j2J1

(xj + dj)+
P

i2I1
di, with

n /2 J1 [ I1. Also, s exists such that s 2 J1 [ I1 \ J [ I.
If ds > dn, then

X

j2J

(xj + dj) +
X

i2I[{s}\{n}

di >
X

j2J

(xj + dj) +
X

i2I

di,
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which is a contradiction, since the expression on the right is maximal. If ds = dn, we may
simply replace n by s in the sum for En

(0,1)i,(1,1)j (B2) and get that En
(0,1)i,(1,1)j (B2) does not

depend on (xn, dn) and therefore

E
n
(0,1)i,(1,1)j (B2) = E

n�1
(0,1)i,(1,1)j (B2 \ {(xn, dn)}),

which contradicts (2.1). Finally, assume that ds < dn. If s 2 I1, then
X

j2J1

(xj + dj) +
X

i2I1[{n}\{s}

di >
X

j2J1

(xj + dj) +
X

i2I1

di,

which is once again a contradiction. Now assume that s 2 J1. Since xs  xn, we have
xs + ds < xn + dn and therefore

X

j2J1[{n}\{s}

(xj + dj) +
X

i2I1

di >
X

j2J1

(xj + dj) +
X

i2I1

di,

which is a contradiction.
We conclude that

E
n
(0,1)i+1,(1,1)j (B2) = dn + E

n�1
(0,1)i,(1,1)j

�
B2 \ {(xn, dn)}

�

< dn + E
n�1
(0,1)i,(1,1)j

�
B1 \ {(xn, dn)}

�

 E
n
(0,1)i+1,(1,1)j (B1).

We have shown that if B1 6= B2, we can find elementary 2-symmetric max-plus polynomials
that distinguish B1 and B2. This completes the induction and the proof.

Regularizing subsets of barcode space. In this paper, we consider subsets of barcode space
defined as follows. For a fixed m > 0, denote Bm

n to be the subset of Bn consisting of those
(x1, d1, x2, d2, . . . , xk, dk) with k  n and di > 0 such that

xi  mdi(2.9)

for i = 1, 2, . . . , k. Given a finite set of barcodes, the value ofm is straightforward to determine.
While it might appear restrictive at first to consider only a subset of the barcode space, it
does not actually pose any limitations in practice. Indeed, for a finite data set generated by
some finite process (e.g., meshes have a finite number of vertices/faces, images have limited
resolution, etc.), there will only be finitely many bars, each with finite length, in the resulting
barcode.

In [51], an infinite list of functions required to distinguish any two barcodes is given. Every
function in this list is stable with respect to both the Wasserstein p- (for p � 1) and bottleneck
distances. However, in application settings, it is not possible (and quite frankly, does not make
sense) to work with infinitely many functions since, in order to perform actual computations
for any real data analysis, the data set in question must be finite. Therefore, we work with
subsets Bm

n to ensure that we have an embedding into a finite-dimensional Euclidean space
for computational feasibility. The functions Em,(1,0)i,(1,1)j that we subsequently list in (2.10),
defined for a fixed m, are the finitely many functions we require to distinguish barcodes in
Bm
n. This restriction does not a↵ect the Lipschitz continuity of the polynomials, which always

holds, both in the regularizing subset given by (2.9) as well as in general barcode space.D
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Tropical coordinates on barcode space. Using Proposition 2.8 and restating the proof of
Theorem 6.3 in [51] for the following smaller family of functions, we establish that

Em,(0,1)i,(1,1)j (x1, d1, x2, d2, . . . , xn, dn) := E(0,1)i,(1,1)j (x1 � d
m
1 , d1, . . . , xn � d

m
n , dn)(2.10)

induces an injective map on Bm
n. This collection of functions separates nonequivalent barcodes

and are Lipschitz with respect to the Wasserstein p- and bottleneck distances [51]. We now
give an example (with steps) for calculating these functions and evaluating them on barcodes.

Example 2.9. Fix n = 2. The set of orbits under the S2 action is

E2/S2 =

8
>>>><

>>>>:

✓
1 1
1 1

◆�
,

✓
1 0
1 1

◆�
,

✓
1 1
0 1

◆�
,

✓
0 0
1 1

◆�
,

✓
1 0
1 0

◆�
,

✓
1 0
0 1

◆�
,

✓
0 1
0 1

◆�
,

✓
0 1
0 0

◆�
,

✓
1 0
0 0

◆�

9
>>>>=

>>>>;

.

According to Proposition 2.8, we need only consider the functions defined by the following
orbits to separate barcodes when n = 2:

✓
0 1
0 0

◆�
,

✓
0 1
0 1

◆�
,

✓
0 0
1 1

◆�
,

✓
1 1
0 1

◆�
,

✓
1 1
1 1

◆�
.(2.11)

Suppose that we have two barcodes B1 = [(1, 2), (3, 1)] and B2 = [(2, 2)], where B1,B2 2 B2.

1. Compute m: For intervals (1, 2), (3, 1), (2, 2), find the smallest m such that xi  mdi for
all i. This m is determined by rearranging (2.9) as xi  mdi , xi

di
 m, and must be

greater than the quotients xi
di

for i = 1, 2, 3. These quotients are 1
2 ,

3
1 , 1, and therefore we

take m = 3. Having determined m, it follows that B1,B2 2 B3
2.

2. Determine the 2-symmetric max-plus polynomials from the subcollection of orbits (2.11):

E3,(0,1)(x1, d1, x2, d2) = E3,(0,1),(0,0)(x1, d1, x2, d2)

= d1 � d2

= max{d1, d2},
E3,(0,1)2(x1, d1, x2, d2) = E3,(0,1),(0,1)(x1, d1, x2, d2)

= d1d2

= d1 + d2,

E3,(1,1)(x1, d1, x2, d2) = E3,(0,0),(1,1)(x1, d1, x2, d2)

= (x2 � d
3
2)d2 � (x1 � d

3
1)d1

= max
�
min{x2, 3d2}+ d2,min{x1, 3d1}+ d1

 
,

E3,(0,1),(1,1)(x1, d1, x2, d2) = (x1 � d
3
1)d1d2 � (x2 � d

3
2)d2d1

= max
�
min{x1, 3d1}+ d1 + d2,min{x2, 3d2}+ d2 + d1

 
,

E3,(1,1)2(x1, d1, x2, d2) = E3,(1,1),(1,1)(x1, d1, x2, d2)

= (x1 � d
3
1)d1(x2 � d

3
2)d2

= min{x1, 3d1}+ d1 +min{x2, 3d2}+ d2.D
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3. Evaluate on B1 and B2.
The Euclidean-space vector representation of B1 and B2 is (2, 3, 4, 6, 7) and (2, 2, 4, 4, 4),
respectively.

3. Su�cient statistics and likelihoods for barcodes. In this section, we motivate the
need for su�cient statistics for persistent homology. We also present our main result that
tropical functions, defined according to the max-plus and min-plus semirings and listed in
(2.10), are su�cient statistics for persistence barcodes. Lastly, we discuss the implications of
our result on statistical parametric inference by imposing the structure of exponential family
distributions and defining likelihood functions for the tropical coordinatized representation of
barcodes.

3.1. Su�cient statistics and persistent homology. Although a well-defined metric space,
the space of barcodes exhibits a complex geometry with respect to the L2-Wasserstein distance,
it is an Alexandrov space with curvature bounded from below [83]. In the more conventional
sense, this structure is theoretically not restrictive since under general Wasserstein p-distances,
it is also a Polish space and admits well-defined characterizations of expectations, variances,
and conditional probabilities [63]. This means that formal probability measures and distribu-
tions may be formulated for persistence diagrams and barcodes. Probability measures on the
space of persistence diagrams have been of key interest for conducting statistical inference in
TDA (e.g., [6, 14, 17]). However, formulating explicit, parametric probability distributions
directly on the space of persistence diagrams—under either the Wasserstein p-distance or the
bottleneck distance as the limiting case of the Wasserstein distance—remains a significant
challenge. Although nonparametric methods for persistent homology exist (e.g., [21, 76]), in
classical statistics, parametric modeling is the canonical starting point for data analysis and in-
ference. Fitting nonparametric models can be more computationally intensive than parametric
methods, which is another drawback given that computing persistent homology does not scale
well for very large data sets. In particular, the upper size bound for Vietoris–Rips complexes
based onN vertices is 2O(N), and the computational complexity for persistent homology imple-
mented by the standard algorithm [32, 91] is cubic in the number of simplices (for a detailed
survey on computing persistent homology, see [66]). Furthermore, the existence of Fréchet
means has been proven, but these are not unique [83]. It is therefore di�cult to perform statis-
tical analyses, particularly parametric inference, directly on the space of persistence diagrams.

Statistical su�ciency. The di�culty of defining explicit probability distributions directly
on the space of barcodes is our main motivation for the present work. To solve this problem,
our strategy is to achieve su�ciency for barcodes via Euclidean coordinatization. This way we
can establish distributional forms for the coordinatized equivalents of barcodes, as long as our
mapping is a su�cient statistic. Given that the coordinatization is a topological embedding
and the mappings are continuous and injective between barcode and Euclidean space, any
parametric inference performed on these coordinatized equivalents naturally preserves all key
properties in barcode space. The property of injectivity also ensures the existence of an
inversion. Therefore, the results of parametric analyses on Euclidean space can theoretically
be relayed back into barcode space by the inverse mappings. Note, however, that this is not
necessary in practice, because the su�ciency guarantees that (for analytical purposes) all of
the information from the original barcodes is retained by their Euclidean coordinates.D
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Intuitively, a statistic is said to be su�cient for a family of probability distributions if the
original sample from which the statistic was computed provides no more additional information
on the underlying probability distribution than does the statistic itself. A subtlety to remark
here is that the term “statistic” has a dual meaning: the same term is used to refer to the point
estimate, i.e., evaluation of a function, as well as to the function itself (as an example, the
mean is often used to refer to both the value obtained from computing the empirical average
of a finite set of data points as well as the function itself, which is the sum of data values
divided by the number of data points). The concept of su�ciency retaining all information
applies to both the statistic as a function of the data mapping to a codomain as well as
the statistic as an evaluation of such a function. In the former case, su�ciency refers to a
property of the statistic with respect to probability measures on the corresponding domain
and codomain, where the exact distribution may be unknown but the spaces nevertheless
admit well-defined probability measures. In the latter case, su�ciency refers to the purpose
of determining the exact probability distribution that generated the observed data, which is a
key aim of parametric inference. In this case, knowing a su�cient statistic contains all of the
information needed to compute any estimator of the parameters for the assumed underlying
distribution.

Definition 3.1. Let X be a vector of observations of size n whose components Xi are in-

dependent and identically distributed (i.i.d.). Let # be the parameter that characterizes the

underlying probability distribution that generates Xi. A statistic T (X) is su�cient for the

parameter # if the conditional probability of observing X, given T (X), is independent of #.

Equivalently,

P(X = x | T (X) = t,#) = P(X = x | T (X) = t).

The above definition applies to point evaluations of the statistic T (X). From the measure-
theoretic perspective, a statistic T (·) is su�cient for a given set M of probability measures
on a �-algebra S if the conditional probability of some subset E ✓ S, given a value y of T (·),
is invariant for every probability measure in µ 2 M.

We now recall an important result in the mathematical statistics literature for assessing
statistical su�ciency: the factorization criterion for su�cient statistics [37, 64]. The following
theorem is classically used as a definition for checking su�ciency, in particular, for statistics
that are point estimates.

Theorem 3.2 (Fisher–Neyman factorization criterion). If the probability density function for

the observed data is f(x;#), then the statistic T = T (x) is su�cient for # 2 ⇥ if and only if

nonnegative functions g and h exist such that

f(x;#) = h(x)g
�
T (x);#

�
.(3.1)

Namely, the density f(·) can be factored into a product where one factor h(·) is independent

of #, and the other factor g(·) depends on # and only depends on x only through T (·).
This factorization need not be unique for any given distribution. For example, to see that the
identity function T (X) = X is a su�cient statistic, we may factorize by setting h(x) = 1, and
then f(x;#) = g

�
T (x);#

�
for all x. In this case, T (X) is the trivial su�cient statistic and is

interpreted as the data themselves being su�cient for the data.D
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Example 3.3 (normal distribution: unknown mean µ, known variance �
2). We denote the

known parameter by the subscript # = �. The normal probability density is

f�(x;µ) =
1p
2⇡�2

exp

⇢
� (x� µ)2

2�2

�
.

By setting

h�(x) :=
1p
2⇡�2

⇢
� x

2

2�2

�
, T�(x) :=

x

�
, g�(y) := exp

⇢
µ

�
· y � µ

2

2�2

�

and substituting in (3.1) with y = T�(x), we get

f�(x;µ) =
1p
2⇡�2

exp

⇢
� x

2

2�2

�
· exp

⇢
µ

�
· x
�
� µ

2

2�2

�
=

1p
2⇡�2

exp

⇢
� (x� µ)2

2�2

�

as desired.

Theorem 3.2 is valid for arbitrary families of distributions when studying su�ciency of
point estimates. The following measure-theoretic reinterpretation asserts the generality of the
theorem, particularly in the case where su�ciency refers to statistics on probability measures
[44]. Essentially, the result depends on the assumption that the family of probability measures
P# is dominated by a single �-finite measure. In the case of discrete variables, this amounts
to the existence of a countable set S, which does not depend on #, for which P#(S) = 1 for
all # 2 ⇥. In the case of absolutely continuous variables, this amounts to the measurability
of the statistic.

Theorem 3.4 ([44]). A necessary and su�cient condition that the statistic T (·) be su�cient

for a dominated set M of measures on a �-algebra S is that for every µ 2 M, the density

fµ := dµ/ d� (where dµ/ d� is the Radon–Nikodym derivative) admits the factorization

fµ(x) = h(x)gµ
�
T (x)

�
,

where h(·) 6= 0 is a measurable function with respect to S, and gµ(·) is a measurable function

with respect to the codomain T of T (·).
As we will show, in the settings where the statistic is given by tropical polynomials in

(2.10), S corresponds to the space of persistence barcodes Bm
n, where T is Euclidean space.

Although the above theorem holds in broader generality, the case of absolutely continuous
variables is su�cient for our setting since the tropical polynomials are Lipschitz continuous
and are therefore absolutely continuous as well.

Su�cient statistics for persistence barcodes. Given the existence of parametric distributions
and probability measures on barcode space [63], our main theorem states that the map from
Bm
n, as an embedding into Euclidean space via tropical functions, is a su�cient statistic.

Su�ciency is classically asserted by the injectivity of continuous mappings (e.g., [29, 44]). We
follow this same approach in our proof.

Theorem 3.5. Consider the subset Bm
n of Bn consisting of barcodes [(x1, d1, . . . , xn, dn)]

with di > 0 such that xi  mdi for some fixed m and i = 1, 2, . . . , n. Let P⇥ be the family of

probability measures on Bm
n. The map defined byD
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T : Bm
n ! Rd

B 7!
�
Em,(0,1)i,(1,1)j (x1, d1, x2, d2, . . . , xn, dn)

�
i+j2Nn

(B),(3.2)

where d is the number of orbits used to define separating functions, is a su�cient statistic for

all P# 2 P⇥.

Proof. Denote the image of Bm
n under (Em,(0,1)i,(1,1)j (x1, d1, x2, d2, . . . , xn, dn))i+j2Nn

by

T ✓ Rd. On Bm
n, we take the bottleneck distance, and on T , we take the standard Euclidean

distance. We can view Bm
n as a measurable space by taking the Borel �-algebra to be the

smallest �-algebra that contains all open sets in the metric space (Bm
n, d

B
1) with topology

generated by open balls. The same goes for T with the standard Euclidean distance ([69,
Chapter 1]). Both metric spaces are separable [63] and complete (Bm

n is complete since it is
a closed subspace of the barcode space).

To apply Theorem 3.4 and show that T generates su�cient statistics for probability
measures on Bm

n, we use the property that the map T is injective, proven in Proposi-
tion 2.8. By definition, this means that there exists some ' : T ! Bm

n such that ' �
T = IdBm

n
and T � ' = IdT . For notational simplicity, we denote f#(B) := f(B;#) and

g#(T (B)) := g(T (B);#). The condition of Theorem 3.4 holds for T where g# = f# � ':

f#(B) = f#

�
'
�
T (B)

��
,

= f# � '
�
T (B)

�
,

= g#

�
T (B)

�
.

We now proceed to verify that all the relevant functions are measurable, i.e., that for each of
them, the preimage of any measurable set is measurable. The function h(B) ⌘ 1 is a constant
and therefore continuous, from where it follows that it is measurable ([69, Theorem 1.5 in
Chapter 1]). To show that f# is measurable, notice that g# = f# � '. Since g# is measurable
by assumption (Theorem 3.4), it will be su�cient to show ' : T ! Bm

n is measurable. Since
the map T is Lipschitz continuous with respect to the bottleneck, Wasserstein p-, and the
standard Euclidean distances, it is measurable with respect to Borel �-algebras as specified
previously ( [69, Theorem 1.5 in Chapter 1]). By the Kuratowski theorem ([69, Corollary
3.3 in Chapter 3]), the inverse of an injective, measurable map between separable metric
spaces equipped with Borel �-algebras is measurable, which leads to the conclusion that ' is
measurable.

This proves the result when Bm
n is equipped with the bottleneck distance. A verbatim

proof provides the same result for all Wasserstein p-distances.

As previously mentioned, the dimension d of the codomain Rd for the tropical mappings
in (3.2) need not equal the number of all orbits given by the symmetric group action, as a
result of Proposition 2.8. The dimension d is determined by the restriction that i+ j 2 Nn,
where n is the number of bars in the largest barcode, which simplifies to 2d = 2n+ n(n+ 1).

3.2. Exponential families and likelihood functions for persistent homology. Su�cient
statistics are strictly parametric by nature and thus are most relevant in studies centered
around inference. Parametric inference is carried out under the assumption that the parameterD
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space is necessarily finite and therefore bounded with respect to sample size. The only class
of distributions that satisfies this restriction is known as the exponential family [28, 55, 74],
generated by a particular case of Theorem 3.2.

For many applications, data can be appropriately modeled using exponential family dis-
tributions. This is especially true for biological applications, which is the focus of the case
study presented in section 4. Here, Gaussian distributions are commonly assumed for many
quantitative traits such as human height (e.g., [82, 89]) and weight (e.g., [86]), while dichoto-
mous phenotypes, such as disease status, are usually modeled as Bernoulli random variables
(e.g., [80]). Counts, such as gene expression data, are often modeled as Poisson or negative
binomial distributions (e.g., [8, 60]). These distributions are all members of the exponen-
tial family; indeed, many more important distributions such as the exponential, geometric,
gamma, beta, chi-squared, and Dirichlet distributions are also members of this class. The
application of such distributions also extend beyond biology and arise in many other scientific
disciplines (e.g., quality control).

Definition 3.6. Let the following restriction be applied to (3.1) in Theorem 3.2,

g(T (x);#) = exp
�
h⌘(#), T (x)i �A(#)

 
,(3.3)

where h· , ·i denotes the usual inner product in Euclidean space, and ⌘(#), T (x), and A(#) are
known functions. The resulting class of probability distributions spanned by (3.1), with g(·)
given by (3.3), is known as the exponential family of probability densities.

Though less general than the form in (3.1), the exponential family is an important class
of distributions that is comprised of many of the most common distributions in statistics.
Given an observation x, the likelihood function L (·) is a function of the parameter # from the
probability distribution f# that generates the observation within the sample. Namely,

L (# | x) = f#(x)

= h(x)g(T (x);#),(3.4)

with some su�cient statistic T (x). For an exponential family model, if g(·) is given by (3.3)
and we denote a(#) := exp{�A(#)}, then we obtain

L (# | x) = h(x)a(#) exp
�
h⌘(#), T (x)i

 
.(3.5)

Joint likelihoods for persistence barcodes. We now extend the above formulation to the
multivariate case and, in particular, we consider the case for multiple barcodes. In this setting,
we denote collections of K barcodes by B = (B1,B2, . . . ,BK), the tropicalized versions of
these collections by T (B), and the collection of distribution parameters by # = (#1, . . . ,#K).
We will use B, T (B), and # to notate singular (or univariate) elements of these vectors,
respectively. For K barcodes marginally distributed according to f#, as defined by (3.4), their
joint likelihood may be written as

L (# |B) = f#

�B�

= h(B)g(T (B);#),(3.6)
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with expectation E[B ] = µ and some general covariance structure V[B ] = ⌃ between the
barcodes. When f# belongs to the exponential family, as denoted in (3.5), the joint likelihood
for the K observations may be written as the following:

L (# |B) = a(#)K exp
�⌦

⌘(#), T (B)
↵ 

.(3.7)

Since the form of our tropical su�cient statistic (3.2) is a vector in Euclidean space for
each barcode, this quantity is well defined. Most importantly, the inner product is readily
computable in Euclidean space with respect to the natural Euclidean metric (as opposed to
the space of barcodes which does not yield a natural definition for an inner product due to its
complex geometry, as discussed above).

4. Application: Studying evolutionary behavior in viral data sets. We now demonstrate
the utility of our su�ciency result in applications regarding two infectious viral diseases:
HIV and avian influenza. More specifically, we study both dimensions 0 and 1 of persistent
homology. In dimension 0, we concretely demonstrate su�ciency in the preservation of bio-
logical characteristics (in the form of clustering behavior) of HIV. In dimension 1, we impose
the parametric structure of an exponential distributive family to carry out pairwise compar-
isons between the marginal distributions of intra- and intersubtype reassortment in avian
influenza.

4.1. Demonstrating su�ciency in HIV transmission clustering. HIV transmission clus-
ters represent groups of epidemiologically related individuals who share a common recent viral
ancestor [45, 50]. Recently, [70] reported the existence of a prominent HIV transmission clus-
ter a↵ecting more than 100 people from a population of men who have sex with men (MSM)
in Valencia, Spain.

Since epidemiologically related groups are often characterized by the identification of small
pairwise genetic distances, sequences derived from a transmission cluster can be easily di↵er-
entiated from those derived from unrelated patients by statistically assessing their clustering
behavior (see Figure 2). Using persistent homology, dimension 0 (PH0) captures the cluster-
ing of sequences based on vertical evolution (i.e., the amount of evolution explained solely by
mutation [20]). This is shown via bottleneck distances in Figure 3(a). This particular ap-
plication serves as a real-data example to demonstrate that tropical coordinatization retains
all information contained in barcodes. Specifically, we show that no recombination events
occurred in this HIV data set, indicated by the similar clustering pattern shown among the
phylogenetic trees obtained for each independent segment of analyzed viral samples. More
generally, persistent homology not only provides information on clusters that would also be
recovered by single-linkage clustering in dimension 0, but it also provides relevant information
on the potential for higher dimensional persistence intervals to appear. Higher dimensional
persistence intervals would suggest that there exists recombination or reassortment events.
Such information cannot be obtained from single-linkage clustering alone.

In order to demonstrate su�ciency and verify that the tropical representations of the bar-
codes retain the same biologically-relevant clustering information in dimension 0, we generated
10 random subsets by uniform sampling without replacement of 30 polymerase sequences from
(i) the MSM transmission cluster, (ii) the reference data set (i.e., the unrelated patients), and
(iii) sequences from both the transmission cluster and the reference data set. In total, 10 ⇥
30 sequences were analyzed. Matrices of pairwise genetic distances were obtained from each
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Figure 2. Principal component analysis plot of genetic clustering for HIV sequences. Principal
components calculated from pairwise genetic distances for HIV transmission cluster versus unrelated reference
cluster.
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Figure 3. Projection plots for pairwise bottleneck distances and Euclidean distances for HIV

sequences. (a) Metric multidimensional scaling (MDS) calculated from pairwise bottleneck distances calculated
from dimension 0 persistence barcodes. (b) Principal component analysis (PCA) calculated from pairwise
Euclidean distances of tropical coordinatized barcodes.
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subset. The entries of these matrices are evolutionary distances between sequences, calculated
from observed di↵erences between sequences using evolutionary models (see Appendix C for
further details).

Obtaining phylogenetic trees from distance-based methods as described above can be
viewed analogously to embedding a general metric space (which in our case, is spanned by
distances between gene loci) into tree metrics. This is a specific case of a more general research
problem in the theory of finite metric spaces [1]. As in previous work [20], the underlying
topological space we consider is the phylogenetic tree generated by the genetic distance matrix.
A phylogenetic tree is a specific subgraph defined by a set of vertices called leaves and a set
of edges called branches—each with positive length, representing evolutionary time. A leaf
is a vertex with degree 1, a root is a vertex with degree 2, and nonleaf vertices have degree
of at least 2. The graph in consideration is the topological space arising from a usual graph
G = (V,E), where V denotes the set of vertices and E is the set of edges. A graph as a
topological space can be obtained from a usual graph by replacing the vertices by points
and the edges e = st by a copy of the unit interval [0, 1], where 0 identifies with the point
associated to the vertex s and 1 identifies with the point associated to the vertex t. As a
topological space, a graph is the simplicial 1-complex generated by G [46]. Further details in
mathematical phylogenetics from the perspective of algebraic statistics can be found in [67],
and from the perspective of topology and metric geometry in [59]. Since the subgraph of a
graph (as topological space) is itself a topological space, a phylogenetic tree can be viewed as
the underlying topological space [20]. In our setting, leaves in the phylogenetic tree are viral
sequences sampled from individuals, and edges are genetic distances between them.

We obtained the dimension 0 Vietoris–Rips persistence barcodes using Ripser [10] and
evaluated them via the tropical functions described in subsection 2.2. The resulting barcodes
(and their post-transformed Euclidean representations) from subsets (i) and (ii) provide infor-
mation on intragroup distances, while those from subset (iii) provide information on intergroup
distances (i.e., transmission cluster versus unrelated patients). Figure 2 and Figure 3 show
that the three subsets can be easily di↵erentiated, thus demonstrating that the tropical co-
ordinatization of the barcodes are su�cient statistics retaining the clustering behavior of
epidemiologically related individuals.

4.2. Analyzing intra- and intersubtype reassortment in avian influenza. The influenza
virus presents a genome that consists of eight di↵erent ribonucleic acid (RNA) molecules (seg-
ments). Consequently, genetic reassortment—that is, the process of swapping gene segments—
is an important evolutionary process that redistributes genetic variability. Subtype classifi-
cation of influenza is based on the analysis of two surface proteins: hemagglutinin (HA) and
neuraminidase (NA). There exist 18 types of HA (indexed from 1 to 18) and 11 types of
NA (indexed from 1 to 11). Gene reassortment can occur either between viruses from the
same subtype (i.e., intrasubtype reassortment [61]) or between viruses from di↵erent subtypes
(i.e., intersubtype reassortment [65]). From a broad perspective, detecting gene reassortment
is key to understanding mutations within the evolutionary dynamics of viruses.

Traditionally, the detection of reassortment events is based on molecular phylogenetic anal-
yses, in which di↵erent genomic regions (i.e., segments) are analyzed independently. Specific
details on this procedure given in Appendix B. As mentioned previously, if no reassortmentD
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has occurred, phylogenetic trees obtained for each independent segment show a similar clus-
tering pattern of the viral samples that are analyzed. This indicates that all segments share
the same evolutionary history. Alternatively, when a reassortment event occurs, it is detected
by a segment generating a phylogenetic tree with a di↵ering clustering pattern. This indicates
the existence of segment swapping [73]. The detection and quantification of reassortment
events with phylogenetic approaches is a slow and tedious process, partly due to the fact
that obtaining accurate phylogenetic trees can take days, or even weeks, when hundreds or
thousands of samples are analyzed [61]. The use of persistent homology in detecting genetic
reassortment events poses a clear advantage over phylogenetic analysis, not only due to the
increased computational speed, but also because of the enhanced interpretability: dimension
1 persistence intervals provide explicit information on the genetic divergence of the sequences
involved in the reassortment event [20, 33].

Given that viruses from the same subtype are more closely related to each other than they
are to viruses from di↵erent subtypes, it is expected that lengths of intervals in PH1 barcodes
derived from events of intrasubtype reassortment will be shorter than those from intersubtype
reassortment [33]. We will demonstrate this parametrically using our su�ciency result. In
this context, su�ciency means preserving the information that intra- and intersubtype samples
should not cluster together.

Since we are interested in analyzing reassortment events in this example, we focus on avian
influenza type A and study dimension 1 persistence. As discussed above, in the same manner
that phylogenetic trees are specific subgraphs and therefore are topological spaces; here the
subgraph representing reassortment events is a directed acyclic graph and is also a topological
space [20]. By uniform sampling without replacement, as above, we generated 100 random
subsets of 56 concatenated HA and NA sequences representing: (i) only H5N1 sequences, and
(ii) sequences from all subtypes H5Nu and HvN1 where u = 1, 2, . . . , 12 and v = 1, 2, . . . , 9,
respectively. In total, 100 ⇥ 56 sequences were analyzed. H5N1 is of particular interest
because of its characteristics as a highly pathogenic subtype of avian influenza with over 60%
mortality and its high potential to cause a pandemic a↵ecting the human population [54]. The
resulting barcodes from subsets (i) provide information on intrasubtype reassortment events,
while those from subsets (ii) provided information on intersubtype reassortment events.

Su�ciency is inherently a parametric construct, and since we have su�cient statistics
for the family of probability measures on the space of barcodes, the parametric structure
of probability distributions on and between the two spaces is thus preserved [13, 58]. We
assume that the Euclidean representation of barcodes, from each of the intra- and intersubtype
populations, jointly come from a multivariate normal distribution:

T (B) ⇠ N (µ,⌃),

withK-dimensional mean vector µ, andK⇥K symmetric and positive semidefinite covariance
matrix⌃. This implies that we may assume each barcode to have a marginal univariate normal
distribution:

T (Bk) ⇠ N (µk,�
2
k), k = 1, 2, . . . ,K,(4.1)

with scalar mean and variance # = {µk,�
2
k}, andK = {43, 100} for the intra- and intersubtype

reassortment events, respectively. The data on intra- and intersubtype reassortment eventsD
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were obtained from the publicly available data source (see Appendix C for details); data on
intrasubtype reassortment are more limited than those on intersubtype reassortment. The
distribution plots for the data of each class of reassortment events are shown in Figure 4.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tropicalized H1 Barcodes

p(
x)

−0.2 0.2 0.6 1.0 1.4 1.8

Intrasubtypes Intersubtypes

Figure 4. Marginal distribution plot of intra- and intersubtype reassortment events for avian

influenza. The marginal distributions for square-root transformations of the Euclidean barcode representations
(via tropical coordinatization) were calculated for both intra- and intersubtype reassortment for avian influenza
and then fitted with a smooth density function.

In this parametric setting, we may study pairwise comparisons between the marginal
distributions of each T (Bk) in order to assess the following clustering behavior: samples that
cluster together will tend to have marginal distributions that are more similar or, in other
words, have shorter distances. A function commonly used to measure di↵erences between two
probability distributions is an f -divergence. Two particular instances of an f -divergence are
the Kullback–Leibler divergence [56] and Hellinger distance [47], which we now briefly define.

Definition 4.1. Assume that T (Bi) and T (Bj) are probability measures that are absolutely

continuous with respect to a third probability measure, �. The Kullback–Leibler divergence
from T (Bi) to T (Bj) is defined to be the integral

KLD
�
T (Bi) kT (Bj)

�
=

Z
dT (Bi)

d�
log

✓
dT (Bi)

d�

.dT (Bj)

d�

◆
d�.(4.2)

Alternatively, the Hellinger distance between the measures may be computed by solving the

following

H
2
�
T (Bi), T (Bj)

�
=

1

2

Z  r
dT (Bi)

d�
�
r

dT (Bj)

d�

!2

d�,(4.3)

where dT (Bi)/ d� and dT (Bj)/ d� are the Radon–Nikodym derivatives of T (Bi) and T (Bj),
respectively.

Intuitively, KLD(· , ·) measures the relative entropy (or information gain) when compar-
ing statistical models of inference; while, H2(· , ·) is the probabilistic analog of the EuclideanD
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distance between two distributions. The latter is a natural measure for the Euclidean-space
vector representation of barcodes. The Kullback–Leibler divergence and Hellinger distance
are nonnegative quantities and, in this context, take the value of zero if and only if two prob-
ability distributions are exactly equivalent. Derivable from the Cauchy–Schwarz inequality,
the Hellinger distance also has the desirable property of satisfying the unit interval bound for
all probability distributions. Namely,

0  KLD
�
T (Bi) kT (Bj)

�
< 1; 0  H2

�
T (Bi), T (Bj)

�
 1.

Note that it can be shown that when the probability measures T (Bi) and T (Bj) stem from
the exponential family, the solutions of both integrals in (4.2) and (4.3) have a closed form
(e.g., [31, 85]). More specifically, for two normal random variables T (Bi) ⇠ N (µi,�

2
i ) and

T (Bj) ⇠ N (µj ,�
2
j ), we have the following:

KLD
�
T (Bi) kT (Bj)

�
= log

�j

�i
+

"
�
2
i + (µi � µj)2

2�2
j

� 1

2

#
,(4.4)

H2
�
T (Bi), T (Bj)

�
= 1�

s
2�i�j
�
2
i + �

2
j

exp

(
� (µi � µj)2

4(�2
i + �

2
j )

)
.(4.5)

Based on the marginal normality assumption in (4.1) with parameter values µi, µj and �i,�j

estimated empirically from the data, we show that the tropical coordinatization of persistence
barcodes su�ciently preserves the fact that intra- and intersubtype samples do not cluster
together. This was done by calculating (4.4) and (4.5) for every pair T (Bi) and T (Bj)
and encoding this information as similarity matrices K and H, respectively. Note that the
key reasoning behind considering two di↵erent types of divergence measures is to illustrate
the robustness of the results. Figure 5 plots a transformed version of the matrix K

⇤ =
11

| � exp{�K} (for the purpose of exact comparisons and interpretability), where 1 is a
vector of ones, and Hellinger distance matrix H. These results can be interpreted as follows:
a value of 0 represents exact likeness, while 1 represents complete dissimilarity. As expected
from the literature, the intersubtypes are seen to be more homogeneous and demonstrate
a higher level of similarity, while the intrasubtypes are comparatively much more random
(e.g., [61, 62, 88]). Moreover, there is very little overlap between the two groups. These
results are consistent for both f -divergence measures.

5. Discussion. In this paper, we explored a functional vectorization method for persis-
tence barcodes that is a topological embedding into Euclidean space based on tropical alge-
braic geometry. We proved that it generates su�cient statistics for the family of all probability
measures on the space of barcodes under mild regularity conditions. The statistical and data
analytic utility of this result lies in the fact that su�ciency allows parametric probabilistic
assumptions to be imposed, which previously has been di�cult due to the prohibitive geome-
try of the space of barcodes. This allows for the application of classical parametric inference
methodologies to persistence barcodes, which we demonstrated in a concrete example in di-
mension 1 persistence applied to avian influenza data. Our methodological approach is based
on the assumption that the random barcodes we obtain from real data may be representedD
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Scaled KLD
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(a) Scaled Kullback–Leibler Divergence

Hellinger
 Distances
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(b) Hellinger Distance

Figure 5. Visual pairwise comparisons of transformed Kullback–Leibler divergence and

Hellinger distances between Euclidean barcode representations. The entries are color-coded accord-
ing to values of the corresponding similarity matrices (a) K

⇤ = 11
| � K, where 1 is a vector of ones, and

(b) H. A value of 0 represents exact likeness, while 1 represents complete dissimilarity. Red values represent
those that are more similar, while blue values are more dissimilar. This plot shows that intersubtypes are more
homogeneous (a higher level of similarity, i.e., more red), while the intrasubtypes are comparatively much more
random. There is very little overlap between the two groups.D
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by a parametric model. Given the complex representation of persistent homology, we recog-
nize that such an assumption may not always be reasonable—in which case, nonparametric
methods as a more flexible alternative option, e.g., [7]. However, note that the trade-o↵ in
relinquishing any parametric assumption is the extent to which inference may be carried out,
which is a well-known problem in statistical modeling, e.g., [26].

Our su�ciency also result provides the foundations for future research towards a better
understanding of parametric probabilistic behavior on the space of barcodes. Since the tropical
vectorization method was shown to be an injective function, we may take a class of parametric
probability distributions (e.g., the exponential family) and calculate its image via the inverse of
the tropical functions in order to explore what functional form the exponential family assumes
on the space of barcodes. Such a study would be algorithmic in nature, since it would entail
exploring collections of maps given by subsets of the orbits under the symmetric group action.

In terms of an increased utility in statistical analyses, the tropical functions are limited
since the vector representation is unique up to barcodes only and not on the level of bars.
This is restrictive in questions motivated by the application of our paper. For example, when
predicting or modeling genetic outbreaks of infectious diseases, individual sequences (or at
least the persistence generators) would need to be identifiable. Future research towards these
e↵orts may begin with the development of a vectorization method that traces back to the
individual bars of a barcode.

Software and data availability. Software to compute and evaluate the tropical functions
on barcodes is publicly available in C++ code, coauthored by Melissa McGuirl and Steve
Oudot and located on the Tropix GitHub repository at https://github.com/lorinanthony/
Tropix. The persistence barcodes were calculated using Ripser [10], which is written in
C++ and is freely available at https://github.com/Ripser/ripser. The bottleneck distances
were computed using Hera [53], which is also written in C++ and freely available at https:
//bitbucket.org/grey narn/hera. The data used in this paper were obtained from publicly
available sources and preprocessed, as detailed in Appendix C. The final version used in the
analyses in this paper are also publicly available on the Tropix GitHub repository.

Appendix A. Mathematical supplement.

Claim A.1. The polynomials that are a ring of algebraic functions on the space of barcodes,

identified by [4], are not Lipschitz with respect to the Wasserstein p- and bottleneck distances.

Proof. Consider the following counterexample. Take one barcode to be the diagonal �
(i.e., intervals of length 0) denoted by B0 and consider the family of barcodes with a single
interval Bx = {[x, x + 1]}. The Wasserstein p- and bottleneck distances between these B0

and Bx is the same for all x, namely, 1/2. Consider a polynomial given by [4], e.g.,

p2,1(x1, y1, x2, y2, . . .) =
X

i

(xi + yi)
2(yi � xi)

1
,

then
p2,1(B0) = 0 and p2,1(Bx) = (2x+ 1)2.

Now, the di↵erence p2,1(Bx)�p2,1(B0) tends to infinity as x tends to infinity. The bottleneck
(and Wasserstein p-) distance, meanwhile, is constant at value 1/2 the entire time. Therefore,D
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by definition, this function is not Lipschitz. This particular case is problematic and shows
that other functions proposed in [4] are also not Lipschitz with respect to the Wasserstein
p- and bottleneck distances.

Appendix B. Molecular phylogenetic analysis.
A phylogenetic analysis consists of studying the evolutionary relationships of a set of in-

dividuals (i.e., viral sequences), with the aim of extracting and analyzing their diversification
history. This type of analysis is usually performed by using an alignment of sequences as input.
Given this input, a phylogenetic tree is then produced—that is, a graphical representation of
the evolutionary relationships among the individuals. Common statistical methods of phylo-
genetic inference are maximum likelihood and Bayesian phylogenetics, which aim to maximize
a statistical parameter (either the likelihood of the alignment or its posterior probability) by
modeling the molecular evolutionary processes considered in the phylogenetic reconstruction
using stochastic processes (e.g., [43, 77]). Other methods are distance-based, which may be
used on the trees themselves as a means of reconstruction (e.g., [38, 78]), or on spaces of trees,
which are commonly used to study and compare various trees, e.g., [12]. See [67] and [59] for
further detail and a discussion on challenges of computational phylogenetic analysis.

Appendix C. Data sourcing and preprocessing.
The respective virus data sets in this paper were obtained from public sources. We give

the details on their sources and preliminary data processing procedures below.
HIV. HIV polymerase sequences derived from patients included in the MSM HIV trans-

mission cluster [71] were retrieved from supplementary material made public on GenBank.
Sequences derived from unrelated patients were obtained from the Los Alamos HIV database
in October 2016. Only sequences from the same subtype (HIV subtype B) spanning the poly-
merase region were considered. In order to ensure that these sequences were not epidemi-
ologically related, redundant sequences were removed after conducting an initial clustering
analysis with a specified genetic distance threshold of 5%, using CD-HIT [49]. All sequences
were aligned using MAFFTv7 [52].

Avian influenza. HA and NA genes of avian influenza A were downloaded from the In-
fluenza Virus Database of the National Center for Biotechnology Information (NCBI). The
resulting gene data sets were aligned with MAFFTv7 [52]. Concatenated sequences of both
genes (derived from the same sample) were generated with the package ape written in R [68].
The multiple sequence alignments were trimmed with TrimAl [16] in order to remove regions
of sparse homology (i.e., biologically shared ancestry).

In both viral examples, pairwise distances were obtained using PAUP* [79] and were calculated
by using the GTR + GAMMA (4 CAT) model, which is commonly used for studying HIV and
influenza data [81, 87]. Briefly, the generalized time reversible (GTR) model is an evolutionary
model that considers variable base frequencies, where each pair of nucleotide substitutions
occur at di↵erent rates [30]. Combined with a gamma distribution, it also accounts for rate
variation among sites [90]. The use of a substitution model when calculating genetic distances,
as carried out according to these procedures, leads to estimates that are assumed to be more
biologically accurate.
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370 MONOD, KALIŠNIK, PATIÑO-GALINDO, AND CRAWFORD

[61] I. Maljkovic Berry, M. C. Melendrez, T. Li, A. W. Hawksworth, G. T. Brice, P. J. Blair, E. S.
Halsey, M. Williams, S. Fernandez, I.-K. Yoon, L. D. Edwards, R. Kuschner, X. Lin, S. J.
Thomas, and R. G. Jarman, Frequency of influenza H3N2 intra-subtype reassortment: Attributes
and implications of reassortant spread, BMC Biology, 14 (2016), p. 117, https://doi.org/10.1186/
s12915-016-0337-3.

[62] N. Marshall, L. Priyamvada, Z. Ende, J. Steel, and A. C. Lowen, Influenza virus reassortment
occurs with high frequency in the absence of segment mismatch, PLoS Pathog., 9 (2013), e1003421.

[63] Y. Mileyko, S. Mukherjee, and J. Harer, Probability measures on the space of persistence diagrams,
Inverse Problems, 27 (2011), p. 124007.

[64] J. Neyman, Su un teorema concernente le cosiddette statistiche su�cienti, Giornale Dell’Istituto Italiano
degli Attuari, 6 (1935), pp. 320–334.

[65] T. H. Nguyen, V. T. Than, H. D. Thanh, V.-K. Hung, D. T. Nguyen, and W. Kim, Intersubtype
Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail, PLoS ONE,
11 (2016), pp. 1–15, https://doi.org/10.1371/journal.pone.0149608.

[66] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, A roadmap for
the computation of persistent homology, EPJ Data Science, 6 (2017), p. 17, https://doi.org/10.1140/
epjds/s13688-017-0109-5.

[67] L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology, Vol. 13, Cambridge
University Press, Cambridge, 2005.

[68] E. Paradis, J. Claude, and K. Strimmer, APE: Analyses of Phylogenetics and Evolution in R lan-
guage, Bioinformatics, 20 (2004), pp. 289–290, https://doi.org/10.1093/bioinformatics/btg412.

[69] K. Parthasarathy, Probability and mathematical statistics: A series of monographs and textbooks, in
Probability Measures on Metric Spaces, Probability and Mathematical Statistics: A Series of Mono-
graphs and Textbooks, Academic Press, 1967, ii p, https://doi.org/10.1016/B978-1-4832-0022-4.
50001-6.
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