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Background on Topological Data Analysis (TDA)

In this supplemental text, we provide more formal details on the mathematics underlying the concepts
of persistent homology and topological data analysis (TDA) for shapes and images. For a complete
discussion on theory in TDA and applied topology, the interested reader may refer to a detailed literature
(e.g. Ghrist, 2008; Carlsson, 2009, 2014).

Homology, Simplicial Complexes, and Persistence

Homology groups provide an algebraic structure to study holes in a topological space. Such holes are
captured indirectly by considering what surrounds them. In other words, homology is concerned with
studying the boundaries of holes. The fundamental property underlying homology is that the boundary
of a boundary is necessarily zero. Algebraicity of such a study refers to group operations and maps that
relate topologically-meaningful subsets of a space with one another. In discretizing a general topological
space in terms of simplices, and thus studying its simplicial homology, the underlying object of study is
a simplicial complex. This is the context from which we work in this paper, and what will be described
in detail in this section.

A k-simplex is the convex hull of k + 1 affine independent points v0, v1, . . . vk, and is denoted by
σ = [v0, v1, . . . , vk]. Examples of k-simplices are points, lines, and triangles. The 0-simplex [v0] is the
vertex v0; the 1-simplex [v0, v1] is the edge between the vertices v0 and v1; and the 2-simplex [v0, v1, v2]
is the triangle bordered by the edges [v0, v1], [v1, v2] and [v0, v2].

Definition S1. A geometric simplicial complex K is a countable set of simplices such that:

1. Every face of a simplex in K is also in K;

2. If two k-simplices σ1, σ2 are in K, then their intersection is either empty or a face of both σ1 and σ2.

Fix a dimension k and a field F. Given a shape M with a finite simplicial complex representation (mesh)
K, a simplicial k-chain is a linear combination of k-simplices

∑
k ckσk, where ck ∈ F and σk ∈ K. Here,

the sum is taken over all possible k-simplices. Denote the set of all such k-chains by Ck(K). These k-
chains may be added (given c =

∑
k ckσk and d =

∑
k dkσk, with c+d :=

∑
k(ck +dk)σk) and multiplied

by scalars. Thus, Ck(K) is a vector space over F of k-chains in K, and the set of k-simplices forms a
canonical basis for Ck(K).

The theory and results developed in this paper rely on the simplifying assumption that F is the binary
field Z2 = Z/2Z. In this case, a k-chain is a collection of k-simplices, and the boundary of a k-simplex
is the sum of its (k − 1)-dimensional faces. Let σ = [v0, v1, . . . , vk] denote the simplex spanned by the
specified vertices. The boundary map ∂k : Ck(K) → Ck−1(K) maps a k-chain to a (k − 1)-chain, and is
given by

∂k
(
[v0, v1, . . . , vk]

)
=

k∑
j=0

[v0, . . . , v−j , . . . , vk]

with linear extension, where v−j specifies that the j-th element is dropped. Elements of Bk(K) := im ∂k+1

are called boundaries, and elements of Zk(K) := ker ∂k are called cycles.

Definition S2. The k-th homology group of M is defined by the quotient group

Hk(K) := Zk(K)/Bk(K).

The intuition behind a homology group is that it contains information about the structure of K. The
zeroth homology group H0(X) is generated by elements that represent connected components of X. For
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example, if X has three connected components, then H0(X) ∼= Z2 ⊕ Z2 ⊕ Z2, where ∼= here denotes
group isomorphism. For k ≥ 1, the k-th homology group Hk(X) is generated by elements representing
k-dimensional “holes” or “loops” in X. A k-dimensional hole can be thought of as the result of taking the
boundary of a (k+1)-dimensional body. The ranks of the homology groups (i.e. the number of generators)
are called the Betti numbers, and are denoted by βk(X) := rank

(
Hk(X)

)
. The notation H∗(X) refers to

all the homology groups simultaneously. In Figure S5, we display the homology of a torus constructed
from a simplicial complex.

Persistent Homology

A filtration of simpicial complexes K is an indexed, nested family of spaces K = {Ks}bs=a such that
Ks1 ⊆ Ks2 if s1 < s2. As the parameter s increases, the homology of the spaces Ks may change
(e.g. components are added and merged, cycles are formed and filled up). Examples of two different
filtrations are given in Figures 1 (in the main text) and S6. The former illustrates a filtration by height
function where the topological structure, in terms of simplicial homology, is revealed at the level of
maximal height as s = x increases in the vertical direction ν. The latter illustrates a filtration by radius:
the sample points from the space are taken to be centers of balls while the radius s = ε grows from 0 to
∞. Overlapping balls are replaced by a k-simplex, depending on the degree of overlap: two overlapping
balls are replaced by an edge, three overlapping balls are replaced by a face or triangle, and so on.
Formally known as the Vietoris–Rips filtration, this procedure reveals the topological structure in terms
of simplicial homology.

The persistent homology of K is denoted by PH∗(K) and keeps track of the progression of homology
groups generated by the filtration. More specifically, the persistent homology contains the information
about the homology of the individual spaces {Ks}, as well as the mappings between the homology of Ks1

and Ks2 for every s1 < s2. Note that persistent homology is also equivalently referred to as persistence.

Definition S3. Let K be a filtered simplicial complex with K1 ⊂ K2 ⊂ · · · ⊂ KS = K. The k-th
persistence module derived in homology, or k-th persistent homology, of K is

PHk(K) :=
{
Hk(Ks)

}
1≤s≤S with {ϕs1,s2}1≤s1≤s2≤S ,

where each linear map ϕs1,s2 : Hk(Ks1) → Hk(Ks2) is induced by the inclusion Ks1 ↪→ Ks2 for all
s1, s2 ∈ [1, S] with s1 ≤ s2.

Intuitively, the main idea behind persistent homology is to study homology across multiple scales. Rather
than restricting ourselves to only one instance of a space, in persistent homology, we study the evolution
of the topological structure over a filtration of the entire space. This amounts to beginning with a rigid
proximity rule connecting observed data points, and then continuously relaxing this rule whilst studying
the corresponding topological progression.

Barcodes and Persistence Diagrams

The persistence of the data is encoded in parameterizations of homology groups known as barcodes—
collections of intervals corresponding to the lifetimes of topological features. The left endpoint of a bar is
the birth time of an element in PH∗(K) and can be thought of as the value of s where this element appears
for the first time. Conversely, the right endpoint of a bar is the death time and represents the value of s
where an element vanishes, or merges with another existing element. The convention in studying merging
features is to retain and treat the feature that appeared first as if it were continuing its existence beyond
the merge event.

Figure S6 illustrates the idea behind persistent homology and provides an example of a barcode
(Ghrist, 2008). In this example, ε corresponds to the filtration parameter value. The filtration is illus-
trated in the upper panels in the evolution of the simplicial complex in terms of vertices, edges, and
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faces that are formed with the progression of ε. Here, the H0 homology captures connected components;
H1 captures cycles whose boundaries are formed by edges between vertices; and H2 captures cycles with
boundaries formed by faces. The dashed lines extending from the panels capture instances of the filtra-
tion, and link to the bars representing the topological features at particular values of ε. As ε progresses,
we see connected components merge, cycles form, and fill up. The barcode summarizes the lifetimes of
all topological features, classified by their homology groups, in this process.

Barcodes can thus be considered as summary statistics of the data generating process, in the form
of collections of intervals. This information can alternatively be represented by a persistence diagram,
which takes the birth and death times of each bar in a barcode as an ordered pair (x, y) and produces
a scatterplot. This provides an alternative multi-scale topological summary of the shape or surface.
In a persistence diagram, the points lie in R2

≥0 and all the points on the diagonal x = y have infinite
multiplicity. The diagonal is included to allow for well-defined metrics on the space of persistence diagrams
(or barcodes).

Since summary statistics are direct parallels to the invariants of a topological space, considering such
topological approaches in data analysis is an intuitive way of reducing dimensionality in high-dimensional
statistical problems (i.e. where the number of predictors is far greater than the number of observations).
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Supplementary Figures

Ventricles

Tumor

Figure S1. A mesh representation of a brain tumor and ventricles.
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Figure S2. Examples of tumors exhibiting necrosis and multifocality. Note that all four
images are taken from different patients to highlight the diversity of disease progression.
These images were segmented from the original MRI scans using the MITKats algorithm (Chen and
Rabadán, 2017).
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Figure S3. Counterexample for injectivity of the Euler Characteristic (EC) curve for a
fixed direction. The vertical axes show the direction of the filtration for both shapes by height
(i.e. the sublevel set filtration). The numbers on the axes denote the evolution of the EC for both
shapes. We see that although the shapes are different, the corresponding ECs change in exactly the
same manner, yielding identical ECTs for a fixed direction ν ∈ S1.

(a) (b)

Figure S4. Example image data used in radiomic analysis. An original MRI from the TCIA
and TCGA is displayed in Figure (a), while the final segmented image via the MITKats algorithm
(Chen and Rabadán, 2017) is given in Figure (b).
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Figure S5. An illustrative example of homology using the 2-dimensional torus and its
cycles. The torus has a single connected component and a single 2-cycle (the void locked inside the
torus). In addition, it has two distinct 1-dimensional cycles (or closed loops) represented by the two
curves in the figure. Consequently, the Betti numbers of the torus are β0 = 1, β1 = 2, and β2 = 1.
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(a) (b)

Figure S6. Illustrative example of persistent homology and the resulting barcode. In Figure
(a), the shape of interest is the annulus, whose topology is given by β0 = 1, β1 = 1, and β2 = 0.
Seventeen points are sampled from the annulus. Simplicial complexes are computed for continuous
values of a filtration parameter, ε ∈ [0,∞). Here, the filtration is given by the radii of balls centered at
each sample point: the radius value is ε, and the associated simplicial complex is built by replacing two
overlapping balls by an edge, three overlapping balls by a face, and so on, for higher dimensions. The
filtration, in terms of the evolving simplicial complex, is illustrated in the upper panels. Vertices, edges,
and faces are formed as the value of ε increases. H0 corresponds to connected components; H1

corresponds to cycles whose boundaries are formed by edges between vertices; and H2 corresponds to
cycles with boundaries formed by faces. The dashed lines extending from the panels connect to the bars
representing the topological features appearing and existing at the corresponding values of ε. As ε
progresses, connected components merge, cycles form, and fill up; the convention when two features
merge is to retain the bar corresponding to the feature existing first. The barcode summarizes this
progression of ε by tracking the “lifetimes” of the topological features according to their homology
groups. Notice that there is a single H0 bar that persists as ε→∞, which represents the single
connected component of the annulus. There are also several bars of varying length in H1, including
dominant bars, suggesting that the point cloud was unevenly sampled from the annulus in such a way
that the sample space contains holes. Also, there is a single H2 bar, which represents the cycle bounded
by faces in the corresponding panel, but the length of the bar is comparatively short, and thus likely to
be a spurious topological artifact. Figure (b) on the right shows the annulus with sampled points; the
balls centered at the sampled points as the radius ε increases; and the corresponding simplicial
complexes formed as the balls intersect (which correspond to the panels extending from specific bars in
the barcode in Figure (a) on the left). This figure has been previously published (Ghrist, 2008).
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