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ABSTRACT
Glioblastoma multiforme (GBM) is an aggressive form of human brain cancer that is under active study in
the !eld of cancer biology. Its rapid progression and the relative time cost of obtaining molecular data make
other readily available forms of data, such as images, an important resource for actionable measures in
patients. Our goal is to use information given by medical images taken from GBM patients in statistical
settings. To do this, we design a novel statistic—the smooth Euler characteristic transform (SECT)—that
quanti!es magnetic resonance images of tumors. Due to its well-de!ned inner product structure, the SECT
can be used in a wider range of functional and nonparametric modeling approaches than other previously
proposed topological summary statistics. When applied to a cohort of GBM patients, we !nd that the SECT
is a better predictor of clinical outcomes than both existing tumor shape quanti!cations and common
molecular assays. Speci!cally, we demonstrate that SECT features alone explain more of the variance in GBM
patient survival than gene expression, volumetric features, and morphometric features. The main takeaways
from our !ndings are thus 2-fold. First, they suggest that images contain valuable information that can play
an important role in clinical prognosis and other medical decisions. Second, they show that the SECT is a
viable tool for the broader study of medical imaging informatics. Supplementary materials for this article,
including a standardized description of the materials available for reproducing the work, are available as an
online supplement.
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1. Introduction

The !eld of radiomics is focused on the extraction of quantita-
tive features from medical magnetic resonance images (MRIs),
typically constructed by tomography and digitally stored as
shapes or surfaces. Quantifying geometric features from shapes
in a way that is amenable to computational analyses has been a
long-standing and fundamental challenge in both statistics and
radiomics. Overcoming such a challenge would provide signif-
icant breakthroughs in broader scienti!c disciplines with the
potential for real, practical impact. One particularly important
application, where a viable quanti!cation of shapes is needed,
is the study of glioblastoma multiforme (GBM)—a glioma that
materializes into aggressive, cancerous tumor growths within
the human brain. GBM is a disease that is currently under
active research in oncology; it is marked by characteristics that
are not common in other cancers, such as spatial di"usivity
and molecular heterogeneity. In human patients, it is a rapidly
progressing disease with a post-diagnosis survival period of
12–15 months and, currently, there are only limited therapies
available (Patel et al. 2014). Obtaining molecular information
of GBM tumors entails an invasive medical procedure on the
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patient that is costly in terms of both time and resources. In
comparison, MRIs of these tumors are easily accessible and
o#en readily available. Being able to e"ectively utilize MRIs of
GBM tumors in computational settings increases the potential
for well-developed statistical methodology to have a signi!cant
impact in cancer research and future treatment strategies.

There are two key aims of our work in this article: !rst,
to quantify GBM tumor images to integrate medical imaging
information into statistical models; and second, to explore the
utility of medical imaging information in clinical studies of
GBM. To achieve the !rst aim, we develop a novel statistic,
the smooth Euler characteristic transform (SECT), that sum-
marizes shape information of GBM MRIs as a collection of
smooth curves. This allows the direct implementation of exist-
ing statistical models from functional data analysis (FDA); in
particular, it allows tumor shape information to be used as
a covariate in regression frameworks. To achieve the second
aim, we study a cohort of individuals with publicly available
MRIs from The Cancer Imaging Archive (TCIA) (Clark et al.
2013; Scarpace et al. 2016), as well as matched genomic and
clinical data collected by The Cancer Genome Atlas (TCGA)
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https://doi.org/10.1080/01621459.2019.1671198
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2019.1671198&domain=pdf&date_stamp=2020-08-26
mailto:lorin_crawford@brown.edu
mailto:antheam@tauex.tau.ac.il
http://www.tandfonline.com/r/JASA
http://www.tandfonline.com/r/JASA


1140 L. CRAWFORD ET AL.

(The Cancer Genome Atlas Research Network 2008). Through
our extensive predictive analysis, we demonstrate a clinically
relevant connection between the shape of brain malignancies
and the variation of survival-based outcomes that are driven by
molecular heterogeneity.

The remainder of this article is organized as follows. In Sec-
tion 2, we outline the theoretical concepts used to quantify shape
information of tumors and highlight their statistical utility; we
also detail the construction of our statistic that summarizes
tumor shape information, the SECT. In Section 3, we detail how
regression methodologies for functional covariates are naturally
suited to model the curves that capture tumor shape informa-
tion. This connection with functional data allows us to specify a
general regression model that intakes tumor shape information
and turns out to be particularly powerful when conducting pre-
dictive inference. For our case study, we focus on Gaussian pro-
cess (GP) regression with Markov chain Monte Carlo (MCMC)
inference. In Section 4, we use the GP modeling framework
to predict the clinical outcomes of GBM patients using gene
expression data, existing morphometric and volumetric tumor
image quanti!cations, and our proposed tumor shape sum-
maries. Here, we perform a comparative study between each
covariate type across di"erent regressions generated by various
covariance functions. Finally, in Section 5, we close with a
discussion on possible future research.

2. Quantifying Tumor Images Using Topology

In this section, we develop a summary statistic that captures
shape information from MRI images of GBM tumors, which
will then be used as covariates in a regression model. The key
strategy is to construct these statistics as a function that maps
shapes into a Hilbert space. This function has two important
properties: (i) it is injective and (ii) it admits a well-de!ned inner
product structure. Notably, the inner product structure allows
us to adapt ideas from FDA to specify general regression models
that use shape summary statistics as predictor variables.

2.1. Background on Summary Statistics for Shape Data

Classical approaches represent shapes as a collection of land-
mark points (Kendall 1984; Bookstein 1997; Dryden and Mardia
1998). This data representation was implemented partly due to
the limited image processing technology of the time. Current
imaging technologies have since greatly improved and now
allow three-dimensional shapes to be represented as meshes,
which are collections of vertices, edges, and faces. Figure S1
depicts an example of a mesh representation for a brain tumor
and ventricles. Recently, methods have been developed to gen-
erate automated geometric morphometrics for mesh representa-
tions (Boyer et al. 2011; Lipman and Daubechies 2011; Al-Aifari,
Daubechies, and Lipman 2013; Boyer et al. 2015). However,
despite these advancements, both user-speci!ed and automated
landmark-based methods are known to su"er from structural
errors when comparing shapes that are highly dissimilar. Some
examples of structural errors include: inaccurate pairwise corre-
spondences between landmarks, alignment problems between
dissimilar shapes, and global inconsistency of pairwise map-
pings. These structural errors tend to accumulate as the number

of landmarks imposed on each shape increases, and a high
number of these points is o#en required to accurately capture
shape information (especially when analyzing diverse shapes)
(Gao et al. 2018). Such complications generally make landmark-
based approaches less attractive.

Most recently, an approach known as the persistent homol-
ogy transform (PHT) was developed to comprehensively
address issues induced by landmark-based methods, and
to maintain robust quanti!cation performance for highly
dissimilar and nonisomorphic shapes (Turner, Mukherjee, and
Boyer 2014). While the PHT allows for the comparison of
shapes without requiring landmarks, it does so by producing
a collection of persistence diagrams—multiscale topological
summaries used extensively in topological data analysis (TDA).
This is restrictive because the geometry of the resulting
summary statistics does not allow for an inner product structure
that is amenable to (generalized) functional data models (Turner
et al. 2014). We propose the SECT because it builds upon
the theory of the PHT, in that it also produces a topological
summary statistic, but it is constructed to be able to integrate
shape information in regression-based methods. This proves to
be particularly useful in our case study on predicting clinical
outcomes in GBM.

2.2. Homology and Persistence

We begin by developing an intuition for persistent homology
(Edelsbrunner, Letscher, and Zomorodian 2000; Zomorodian
and Carlsson 2005), which is a foundational concept in TDA.
Brie$y, persistent homology can be viewed as the data-analytic
counterpart to homology—a theoretical concept from of alge-
braic topology, where the goal is to study the shape of abstract
mathematical objects, such as sets and spaces, by counting
occurrences of geometric patterns. In homology, the geometric
patterns of interest are holes: homology groups provide a
mathematical language for describing and keeping track of
holes of an abstract mathematical object. The motivation
behind classical algebraic topology is to then use these holes
to distinguish between or suggest similarities among di"erent
abstract mathematical objects. For a more detailed review and
theoretical discussion of these concepts, see the supplementary
materials.

2.2.1. Homology
Homology is particularly relevant to our application and case
study in GBM. Intuitively, not only does it describe contrasting
physical tumor characteristics, but it also implicitly captures
some information about the stage of disease progression. For
example, necrosis is a form of cell injury which results in the
premature death of cells. Multifocality is a radiological obser-
vation where individual tumor cells separate from the main
mass and disperse elsewhere within the brain. From an imaging
perspective, necrotic regions show up as dark regions (or holes)
within a tumor, while multifocal tumors appear as segregated
masses. Examples of both necrosis and multifocality captured by
MRI images are shown in Figure S2. It has been suggested that
the more necrosis or multifocality there is in a GBM tumor, the
more aggressive the disease (Barker et al. 1996; Liu et al. 2015).
Applying homology to radiomic studies not only identi!es such
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phenomena, but also tracks the number of times they occur and
therefore provides a notion of disease severity.

Homology is indexed by integers: the 0th-degree homology
captures the number of connected components in the shape,
the 1st-degree homology captures the number of loops, and the
2nd-degree homology captures the number of voids. In the con-
text of our GBM application, degree 0 homology corresponds
to tumor masses and lesions. Degrees 1 and 2 homology corre-
spond to necrosis, depending on whether we are analyzing two-
dimensional image slices from an MRI or the three-dimensional
tumor as a whole.

Despite its intuitive description, computing homology can
be challenging. To this end, it is o#en convenient to represent
the shape as a discrete union of simple building blocks, “glued”
together in a combinatorial fashion. An important example
of such a building block is the simplex: simplices are skeletal
elements that take the form of vertices, edges, triangles (faces),
tetrahedra, and other higher dimensional structures. A simpli-
cial complex K is a collection of simplices and represents the
discretization of a shape or tumor. Meshes that represent three-
dimensional shapes are particular examples of !nite simplicial
complexes (again see Figure S1). There are two key interests in
discretizing shapes into simplicial complexes. First, there exist
e%cient algorithms to compute homology for such discretiza-
tions; and second, discretization is essential for applying these
abstract concepts to real data, where any given dataset will
necessarily be !nite.

In this article, we use the notation Hk(K) to denote the kth
homology group for the simplicial complex K. This corresponds
to the collection of the k-dimensional elements of the simplicial
complex. For example, H0(K) corresponds to the collection of
vertices of the simplicial complex or, equivalently, to the collec-
tion of connected components of the shape (e.g., the masses and
lesions of a tumor).

2.2.2. Persistent Homology
Persistent homology applies homology to data by continuously
tracking the evolution of homology in the data at di"erent scales
(or resolutions). It can thus be seen as a way to extract and
summarize geometric information. In persistent homology, the

index s of a !ltration tracks the homological evolution. A !ltra-
tion is a collection of simplicial complexes {Ks} where the index
s induces totally ordered sets Ki ⊆ Kj for i < j. As s increases,
the sequence of simplicial complexes {Ks} also changes and
grows. In this way, the index s of the !ltration {Ks} tracks the
scale according to which the “shape” of the data changes and
grows. The shape information at each scale s is encoded by the
homology groups Hk(Ks) of the simplicial complex Ks. More
speci!cally, H0 corresponds to the vertices, H1 corresponds to
edges, and H2 corresponds to the faces of the simplicial complex
or discretized shape. An example of a !ltration is depicted in
Figure 1. Here, the index s corresponds to the value of height
function (which depends on some variable x and is discussed
in detail further below) in the vertical direction ν. We see the
evolution of vertices, edges, and a face appearing sequentially
with height. Higher order structures are revealed as s increases.

Computing persistent homology produces a collection of
intervals for each degree of homology, where each interval
represents a k-dimensional topological feature (e.g., a connected
component, loop, or void for a general, three-dimensional
shape) that is “born” at the parameter value given by the le#
endpoint of the interval, and “dies” at the value at the right
endpoint. The length of the interval corresponds to how long
the topological feature “lives,” or persists. In this article, we
consider these intervals to be represented by a persistence
diagram. Persistence diagrams treat the start and endpoints of
each interval as an ordered pair, and displays them as plotted
points on a plane where the x-axis corresponds to birth time and
the y-axis is the death time. Thus, one can consider a persistence
diagram as a collection of points on and above the diagonal, with
the set of points on the diagonal having in!nite multiplicity
(and included for regularity conditions; see the supplementary
materials for further detail).

2.2.3. Persistent Homology Transform
The PHT captures shape information by collecting persistence
diagrams of all degrees of homology, for all possible orientations
of the shape. More formally, for a d-dimensional shape, the
PHT results in d-many persistence diagrams arising from height
function !ltrations over in!nitely many direction vectors on

Figure 1. Demonstrating a !ltration by height (as a function of x) in the vertical direction ν of a simplicial complex K . The inclusions (⊆; from left to right) indicate the
evolution of K with the !ltration depicted by the hash marks (from the bottom to top) on the y-axis, where each element (i.e., vertex, edge, and face) is included at its
maximal height x in the vertical direction ν, as given in Equation (1) from Section 2.3. Starting from the lefthand side, the vertex v0 is !rst added and it remains present in
each subsequent inclusion, while the vertex v1 emerges during the second inclusion and then remains. Similarly, the edge v0v2 connecting vertices v0 and v2 appears at
the third inclusion, and the face 〈v0v2v3〉 forms at the fourth. Altogether, according to these inclusions, the collection of vertices in K are shown to evolve as follows: (i) 〈v0〉;
(ii) 〈v0, v1〉; (iii) 〈v0, v1, v2〉; (iv) 〈v0, v1, v2, v4〉; (v) 〈v0, v1, v2, v3, v4〉; and at the !nal inclusion, (vi) 〈v0, v1, v2, v3, v4, v5〉. Similarly, the collection of edges in K evolves as
follows: 〈v0v2〉 appears at the third, 〈v0v2, v0v3, v2v3〉 emerges at the !fth; and 〈v0v2, v0v3, v2v3, v1v5, v3v5〉 forms at the !nal inclusion. This evolution of vertices, edges,
and faces forms (persistence) vector spaces of i-chains, and may be written as such for concise notation (see the supplementary materials for further details). A version of
this !gure has been previously published (Turner, Mukherjee, and Boyer 2014).
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the surface of the sphere. The space of persistence diagrams is
a complicated, but theoretically well-de!ned probability space
(Mileyko, Mukherjee, and Harer 2011). In particular, it is a met-
ric space, meaning that distances between persistence diagrams
may be de!ned. This is important because distances between
PHT summary statistics provide a way of comparing shapes. The
injectivity of the PHT for two- and three-dimensional shapes
(Turner, Mukherjee, and Boyer 2014), or the one-to-one relation
between the shape itself and its in!nite collection of persistence
diagrams, guarantees that the PHT e"ectively summarizes all
relevant information about the shape.

Considering all possible directions on the surface of the
sphere to summarize shape information is particularly well-
suited to our radiomics application. MRI scans of the brain are
known to be subject to noise: the positioning of patients’ heads
could vary both between patients and individual scans, caus-
ing image registration issues. Considering all directions on the
surface of the sphere bypasses this problem, and incorporates
perturbations directly into the statistic. This is an important
feature of the PHT that we retain in the development of the
SECT. We expand upon the PHT to produce a collection of
continuous, piecewise linear functions that live in Hilbert space
L2. The corresponding inner product structure inherent to
Hilbert spaces allows us to apply the SECT to a much broader
set of statistical methodologies. It is worth noting that for select
covariance functions, the PHT can be adapted to nonparametric
statistical models (Kwitt et al. 2015; Reininghaus et al. 2015;
Kusano, Fukumizu, and Hiraoka 2018), but this class is consid-
erably limited.

2.3. Smooth Euler Characteristic Transform

While the SECT uses the same underlying mathematical princi-
ples as the PHT, it produces a collection of continuous, piecewise
linear functions rather than persistence diagrams. The SECT
implements persistent homology via the Euler characteristic
(EC), which is a topological invariant that appears in many
branches of mathematics. In terms of homology, the EC counts
the ranks of the homology groups (i.e., the Betti numbers, βk,
for the kth homology group Hk) in an alternating sum and thus
reduces the mathematical description of holes in a topological
space from an algebraic group structure to an integer.

De!nition 1. Let X be an arbitrary topological space, Hk(X) be
the kth homology group of X, and βk be the rank of Hk(X). The
Euler characteristic (EC) χ(X) of X is the alternating sum

χ(X) = β0 − β1 + β2 − β3 + · · · =
∞∑

k=0
(−1)kβk.

For a discretized shape or surface in three dimensions repre-
sented as a simplicial complex K, the EC may be analogously
de!ned by the number of simplices in K by

χ(K) = V − E + F,

where V , E, and F are the numbers of vertices (0-simplices),
edges (1-simplices), and faces (2-simplices), respectively.

Just as homology may be augmented to persistent homology
by considering a !ltration, ECs may also be calculated with

respect to a !ltration. The result is an EC curve, which tracks the
progression of the EC as a function with respect to the !ltration.
Let the dimension d = {2, 3}, and !x a direction ν on the surface
of the unit circle or sphere Sd−1 (where ν ∈ Sd−1). Let Md−1 be
the set of all closed, compact subsets (shapes) embedded in Rd

that can be represented in a !nite, discrete manner as simplicial
complexes (Edelsbrunner and Harer 2010). Next, denote the
simplicial complex representation of M ∈ Md−1 by K, and let
Kν indicate the ν-orientation of K. The sublevel set !ltration of
Kν parameterized by a height function r(•, •) is the set {x ∈ K :
x · ν ≤ r}. The ν-directional parameter height function rν(•, •)

is

r : K × Sd−1 → R
{x, ν} *→ x · ν.

(1)

Denote the extremal heights from this !ltration by

aν := min{rν(x), x ∈ K},
bν := max{rν(x), x ∈ K}.

We use the subscript notation to denote the simplicial complex
representation K of a shape M, in the direction ν, as Kν for d =
{2, 3}. Similarly, we use the superscript notation Kx

ν to denote
the varying simplicial complex of Kν , generated by a sublevel
set !ltration with respect to Equation (1) and de!ned by varying
x ∈ Kν .

De!nition 2. The EC curve of K (which discretizes M) in the
direction ν is de!ned by

χK
ν : [aν , bν] → Z ⊂ R

x *→ χ
(
Kx

ν

)
.

(2)

The EC curve tracks the evolution of the EC up to (and includ-
ing) the largest subcomplex of Kx

ν contained in the sublevel set
r−1
ν ((−∞, x]). See Figure 2(a) for an illustrative example of the

evolution of the EC on the two-dimensional contour of a hand.
Here, the direction is the horizontal direction to the right of the
y-axis. The value of the EC changes as the sweep over the palm
!rst reveals the thumb, and then the separation between the
ring and pinky !ngers, followed very shortly by the separation
between the index and middle !ngers, and so on. The EC curve
of this !ltration is plotted in Figure 2(b).

The same rotational summary technique of the PHT may be
adapted to ECs as follows.

De!nition 3 (Previously in Turner, Mukherjee, and Boyer (2014)).
In considering a directional sweep over the surface of the sphere
Sd−1, and calculating the corresponding EC curves χK

ν of the
!nite simplicial complex representations Kν for every direction
ν ∈ Sd−1, the Euler characteristic transform (ECT) is de!ned as
follows:

ECT(K) : Sd−1 → ZR

ν *→ χ
(
Kν

)
.

(3)

In other words, the ECT of a shape collects EC curves of the
shape, over all directions on the surface of the sphere.

The EC curve in Equation (2) and its corresponding ECT in
Equation (3) are piecewise constant, integer-valued functions.
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Figure 2. Example illustrating the evolutionary tracking of topological features for a given shape. (a) A two-dimensional contour of a hand, for which the Euler characteristic
(EC) is calculated and tracked with respect to a horizontal !ltration. (b) The Euler characteristic curve of the two-dimensional contour. At the leftmost !ltration level on the
x-axis, the EC value is equal to 1 on the y-axis. This indicates one connected component corresponding to the thumb in the hand. Just before level −0.05, the index !nger
appears, which increases the value of the EC to 2. (c) The corresponding smooth Euler characteristic (SEC) curve. This found by taking the mean value of the EC curve in (b),
subtracting it from every point along the x-axis, and integrating over the range of extremal heights (see Section 2.3). Since there are no holes in a hand, the EC reduces to
the sum of connected components as they appear with the !ltration. A version of this !gure has been previously published (Turner, Mukherjee, and Boyer 2014).

These discontinuities can a"ect the stability of this representa-
tion (e.g., see Figure 2(b) where there are sharp jumps in the
curve). Therefore, we propose a formulation of Equation (3) that
allows for a type of summary that can be used in a wider range of
statistical analyses. We do this by smoothing a centered variant
of function. The centered variant is given by taking the mean
of curve χ̄K

ν over [aν , bν] and subtracting it from the EC χK
ν (x)

at every x ∈ [aν , bν]. This produces a centered EC curve in the
direction ν ∈ Sd−1,

ZK
ν : [aν , bν] → R

x *→ χK
ν (x) − χ̄K

ν .
(4)

We set the value of ZK
ν to be zero outside the interval [aν , bν]

by default. Integrating the curve gives the following smoothed
construct.

De!nition 4. The centered, cumulative Euler characteristic curve
or smooth Euler characteristic curve (SEC), for a !xed direction
ν ∈ Sd−1, is de!ned for all y ∈ R as

SEC(K) : R → L2

FK
ν (y) :=

∫ y

−∞
ZK

ν (x) dx.
(5)

The SEC is a continuous, piecewise linear function with com-
pact support [aν , bν] by construction. Therefore, it is an element
of the Hilbert space L2 of square integrable functions on R.
The counterpart to Figure 2(b), smoothed by the procedure
described above resulting in the SEC, is visually illustrated in
Figure 2(c). We now formally de!ne the SECT.

De!nition 5. The SECT for a simplicial complex K of a shape
M ⊂ Rd, with d = {2, 3}, is the map

SECT(K) : Sd−1 → L2[aν , bν]
ν *→ FK

ν (bν)
(6)

for all ν ∈ Sd−1. Each curve FK
ν is also an element in the

Hilbert space L2. The following metric can therefore be used

to de!ne distances between two simplicial complexes (discrete
shape representations) K1 and K2,

distSECT
Md−1

(K1, K2) :=
(∫

Sd−1

∥∥FK1
ν − FK2

ν

∥∥2 dν

)1/2
. (7)

The advantage of the SECT over the PHT is that SECT sum-
maries are a collection of curves and have a Hilbert space
structure. This means that their structure allows for quantitative
comparisons using the full scope of functional and nonpara-
metric statistical methodology. The SECT is also an injective
map and the following corollary is an immediate consequence
of previous results (Turner, Mukherjee, and Boyer 2014).

Corollary 1. The SECT is injective for two- and three-
dimensional shapes, that is, when the domain is Md−1 for
d = {2, 3}.

The injective property of the SECT suggests that it concisely
summarizes the original shape data. Mathematically, the SECT
maps between the space of all shapes with a !nite simplicial
complex representation Md−1 and the Hilbert space L2. Thus,
injectivity between these two spaces means that for a given SECT
statistic in L2, there is a (unique) corresponding shape with
some !nite complex representation in Md−1. However, note
that enough directions ν ∈ Sd−1 must be taken for this corollary
to hold since, for any one !xed direction, it is not true that
the EC curve (upon which the SECT construction depends) is
injective. An illustration of this fact is depicted in Figure S3.
To determine the number of directions to use in practice, we
perform a sensitivity analysis with many di"erent combinations
of numbers of directions and sublevel sets. In our application of
interest and case study, we !nd prediction results (with SECT
features as predictor variables) to be reasonably robust to our
!nal choice of numerical parameters.

2.3.1. Small Note on Information Loss
Based on its homological de!nition and !ltration (de!ned by a
height function), the SECT will always capture all topological
and integral geometric (i.e., size) information about a shape.
However, there are instances where information about texture-
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based features may not be captured in the SECT summary
statistic. Intuitively, this is dependent upon the granularity of the
!ltration de!ned by the height function. In theory, a continuous
height function would mitigate this issue, but this is di%cult to
implement in practice. As a result, coarse !ltrations with too
few sublevel sets will cause the SECT to miss or “step over”
very local undulations in a shape. In the context of our GBM
case study, this can occur if a particular tumor is made up of
small focal lesions that are collectively important in explaining
survival outcomes. For those cases, we would not observe this
variance and presumably su"er in predictive performance.

3. Functional Regression Models With Tumor Shape
Information as Covariates

In the previous section, we formally speci!ed the SECT which
allows us to map shapes into a space that (i) is represented by
collection of curves and (ii) has a well-de!ned inner product
structure. We will now discuss how FDA is a particularly suit-
able framework to specify a general regression model that uses
tumor shape information (in the form of topological summary
statistics, captured by the SECT) as covariates. The goal of FDA
is to model data that are continuous functions (e.g., curves,
response surfaces, or images) (Müller and Stadtmüller 2005;
Ferraty and Vieu 2006; Ramsay 2006; Müller and Yao 2008;
Pomann et al. 2016). The key idea here is that these functions
can be considered as elements in a Hilbert space for which one
can specify statistical models using stochastic processes (Preda
2007; Kadri et al. 2010; Morris 2015; Wang, Chiou, and Müller
2016). In this article, we will use a class of stochastic processes
that is o#en referred to as GPs (Wahba 1997; Pillai et al. 2007;
Yuan and Cai 2010).

3.1. Gaussian Process Regression

Denote the shape information (i.e., SECT representation) of a
GBM MRI scan as F(t) = {Fν}m

ν=1 measured over m directions.
A functional linear model considers a continuous response vari-
able y and covariates that are square integrable functions F(t) on
the real interval T , where t ∈ T under the following parametric
form (Müller and Stadtmüller 2005),

y = 〈F(t), α(t)〉 + ε, ε ∼ N (0, τ 2I),
where the residual noise ε is assumed to follow a multivari-
ate normal distribution with mean zero and scaled variance
parameter τ 2, and I is used to denote the identity matrix. Notice
that similar to traditional linear regression models, α(t) is an
unknown smooth parameter function that is now square inte-
grable on the domain T , and 〈•, •〉 denotes a well-de!ned
inner product. In the context of our radiomic case study, the
assumption of a linear relationship between the response vari-
able y and functional covariates F(t) may be too restrictive.
For example, when modeling the topological landscape of brain
tumors (as we will do in Section 4), it is reasonable to assume
that interactions between modes of brain activity extend well
beyond additivity (Friston et al. 2000). As a result, we formulate
a general functional regression model that has the $exibility to
incorporate possible nonlinear interactions. The methodology
we use is GP regression.

There are two key characteristics of a GP regression model.
The !rst key element is a positive de!nite covariance function,
σ : L2 × L2 → R, where again L2 is the Hilbert space of the
SECT functional covariates such that F(t) ∈ L2. The second key
element is the reproducing kernel Hilbert space (RKHS) that is
induced by the covariance function. Given the eigenfunctions
{ψl}∞l=1 and eigenvalues {λl}∞l=1 of the !nite integral operator
de!ned by the covariance function (Mercer 1909), we have
∫

T
σ (u, v)d(u, v) < ∞, λlψl(u) =

∫

T
σ (u, v)ψl(v) dv,

where u = u(t) and v = v(t), and an RKHS can be formally
de!ned as the closure of a linear combination of basis functions
{√λlψl(v)}∞l=1 (Pillai et al. 2007). One may conduct inference
in an RKHS by assuming a GP prior distribution over the
functional covariates directly (Rasmussen and Williams 2006),

f (Fi(t)) ∼ GP
(
µ(Fi(t)), σ (Fi(t), Fj(t))

)
, i, j = 1, . . . , n,

(8)

where f (•) is a smooth operator from L2 to R that is completely
speci!ed by its mean function and positive de!nite covari-
ance function, µ(•) and σ (•, •), respectively. Recall from Sec-
tion 2 that, in practical applications, there are a !nite number
of observed topological summary statistics taken from a given
geometric object. Therefore, if we condition on these !nite set
of locations, the prior distribution in (8) may be represented
as multivariate normal (Kolmogorov and Rozanov 1960). Con-
sider the following joint “weight-space” probabilistic regression
model to complete our speci!cation (Rasmussen and Williams
2006),

y = f + ε, f ∼ N (0, ((F(t), F(t))), ε ∼ N (0, τ 2I), (9)

where f =
[
f (F1(t)), . . . , f (Fn(t))

]ᵀ is now assumed to come
from a multivariate normal with mean 0 (for simplicity) and
covariance matrix ((F(t), F(t)).

3.2. Posterior Predictive Inference

We now formally describe how to conduct posterior predictive
inferences on clinical phenotypic traits for unobserved patients.
Assume that we have received a set of new brain tumors and have
computed their corresponding topological summary statistics
F∗(t). Under the prior in Equation (8), we can write the joint
distribution between the observed patient responses (y) and the
function values taken at the test images (f ∗) as
(

y
f ∗

)
∼ N

(
0,

[
((F(t), F(t)) + τ 2I ((F(t), F∗(t))

((F∗(t), F(t)) ((F∗(t), F∗(t))

])
.

(10)

Intuitively, if we train the model on n tumors and there are
n∗ test images, then ((F(t), F∗(t)) results in an n × n∗ matrix
of covariances between each of the training and testing points.
Similar interpretations also hold for other covariance entries as
well. Deriving the conditional distributions for Equation (10)
then results in a multivariate normal posterior predictive distri-
bution for the test shape smooth operators f ∗ | y ∼ N (µ∗, #∗),



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1145

where
µ∗ = ((F∗(t), F(t))

[
((F(t), F(t)) + τ 2I

]−1 y
#∗ = ((F∗(t), F∗(t)) − ((F∗(t),

F(t))
[
((F(t), F(t)) + τ 2I

]−1
((F(t), F∗(t)).

(11)

Note that in many applications, covariance functions can be
indexed by a bandwidth or length-scale parameter θ , σθ (u, v).
For example, the Gaussian kernel can be speci!ed as σθ (u, v) =
exp{−‖u−v‖2/2θ}. This bandwidth parameter can be inferred;
however, posterior inference over θ is slow, complicated, and
o#en mixes poorly (Liang et al. 2009). For simplicity, we will
work with a !xed bandwidth that is chosen via 10-fold cross-
validation.

4. Predicting Clinical Outcomes in Glioblastoma

To fully illustrate the statistical utility of tumor images (captured
by the SECT topological summary statistic), we apply the GP
regression model to a GBM radiomic study with two measured
clinical outcomes: disease free survival (DFS) and overall sur-
vival (OS). Some recent work in radiomics has con!rmed the
utility of imaging data in GBM research. These e"orts suggest
that the inclusion of shape information improves both the pre-
diction of patient survival outcomes, as well as the classi!cation
of tumor subtypes (Gutman et al. 2013; Mazurowski, Desjardins,
and Malof 2013; Gevaert et al. 2014; Macyszyn et al. 2016). It
is important to distinguish, however, that most of these pre-
vious studies were limited to gross spatial features of cancer
images (e.g., the presence of multifocal tumors, the location of
recurrent lesions, or crude volumetric calculations). The SECT
o"ers a novel contribution to radiomic research as a topological
representation of imaging data. In this section, we will speci!-
cally assess whether topological features are better predictors of
DFS and OS prognoses than three other tumor characteristics:
(i) gene expression, (ii) tumor morphometry, and (iii) tumor
geometry.

4.1. Genomic and Radiomic Data

MRIs of primary GBM tumors were collected from n = 48
patients archived by The Cancer Imaging Archive (TCIA)
(Clark et al. 2013; Scarpace et al. 2016), which is a publicly
accessible data repository containing medical images of cancer
patients with matched genomic and clinical data collected by
The Cancer Genome Atlas (TCGA) (The Cancer Genome
Atlas Research Network 2008). These patients were selected
based on two criteria: (i) individuals had post-contrast T1
axial (transverse) MRIs taken at the time of their diagnosis,
and (ii) these patients have matching (mRNA) gene expression
data and clinical correlates (e.g., recorded DFS and OS) that
are publicly available (Gao et al. 2013; Grossman et al. 2016).
There are three key factors that in$uenced our decision to
use this particular subset of samples. First, the T1-weighted
MRI with gadolinium contrast is one of the most commonly
used imaging modalities and is o#en implemented to assay
lesions with vascular activity (Adin et al. 2015). Second,
axial (transverse) slices were considered as this was the most
common representation in TCIA database and resulted in the

dataset with the most observations. Third, exclusively using
MRIs taken at the time of diagnosis allowed us to avoid any
potential confounding factors related to treatment-speci!c
e"ects that may alter postoperative imaging and/or genomic
pro!les (Macyszyn et al. 2016).

Each collection of patient MRIs consisted of approximately
23–25 segmented slices of two-dimensional grayscale images
(with the exact numbers varying between patients). We segment
these images with the computer-assisted program MITKats to
extract tumor lesions from the surrounding brain tissue (Chen
and Rabadán 2017). Brie$y, this algorithm !rst converts MRI
images to a grayscale, and then thresholds to generate binary
images. Morphological segmentation is then applied to delin-
eate connected components. This is done by selecting contours
corresponding to enhanced tumor lesions, which are lighter
than healthy brain tissue. For instance, necrosis (or H1 or H2
homology as described above in Section 2.2) is represented by
dark regions nested within the indicated lesion. An example of
a raw image obtained from TCIA, along with its corresponding
segmentation, is given in Figure S4.

From these segmented images, we collect three types of
tumor shape information: morphometric features, geometric
measurements, and topological summary statistics. Here, we use
the same morphometric features outlined in previous imaging
studies (Han et al. 2010; Chang et al. 2011) (see listed references
for speci!c details on extraction and computation). The !nal
dataset consisted of these 212 morphometric predictors corre-
sponding to shape and texture, including cellularity skewness,
cytoplasm intensity, nucleus texture, nucleus curvature, and
median edge length. We also consider !ve tumor geometric
measures. The !rst is the enhancing volume for each MRI
slice, which is summed over lesions in the multifocal case.
The other geometric measurements are the core volume of the
enhancing and necrotic regions, the longest lesion diameter, and
the shape factor of the tumor. For the purposes of this study,
we de!ne the shape factor to be the longest lesion diameter
divided by the diameter of a sphere with the same volume.
Lastly, when computing topological summary statistics, we use
100 sublevel sets per slice and compute a di"erent EC curve
for 72 directions evenly sampled over the interval [0, 2π ]. A#er
concatenation, this results in 7200-dimensional vectors for each
patient. Averaging over these curves for each direction gives the
proposed smooth EC statistics. It is well known that reconstruct-
ing three-dimensional brain tissue (and corresponding tumors)
from two-dimensional slices is a nontrivial task (Cline et al.
1987; Amruta, Gole, and Karunakar 2010; Ja"ar et al. 2012).
Moreover, in the context of our case study, it is not guaranteed
that the space in-between individual slices will be the same for
each patient. Therefore, we aggregate topological summaries
across slices for each direction as a proxy for rotating (accu-
rate) three-dimensional representations of each tumor. Example
SECT summary statistics for a segmented tumor are depicted in
Figure 3.

Finally, we use matched mRNA gene expression levels of
the preselected TCGA samples as a baseline data source. Fol-
lowing speci!c preprocessing steps from other genomic studies
(Singleton et al. 2017), we use the robust multiarray average
(RMA) normalization procedure to correct for potential lab-
based batch e"ects and other potential confounders (Irizarry
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Figure 3. Example of a segmented tumor (on the left) with its corresponding SECT curves (on the right). On the right side, we illustrate the curves for directions ν = 1,
36, and 72, respectively. The x-axis shows the number of sublevel sets (i.e., steps) as the !ltration progresses, which we !x to be 100 per slice. In the radiomic prediction
analysis, all 72 curves are concatenated together to create a 7200-dimensional covariate vector for the patient.

et al. 2003). This resulted in a !nal dataset consisting of 8725
genes, which also passed a prespeci!ed hybridization accuracy
threshold and showed reasonably varying expression across the
assay.

4.2. Prediction Results

We now compare the ability of each data type to predict two clin-
ical outcomes: DFS and OS. Brie$y, DFS is the period a#er a suc-
cessful treatment during which there are no signs or symptoms
of the cancer, while OS is tabulated as the entire period a#er
the initial treatment where the patient is still alive. It is worth
noting that DFS is more commonly used over OS in adjuvant
cancer clinical trials because it o"ers earlier presentation of data
(Sargent et al. 2005). This stems from the idea that events due to
disease recurrence occur earlier than death from disease, thus
resulting in a cleaner signal (Birgisson et al. 2011).

Each tumor feature type is modeled with the GP regression
model detailed in Section 3. In the context of this application,
every patient in the data has an o%cial death time. Hence, there
is no need for a right-censored analysis or Cox-based methods
(Rutledge et al. 2013; Fatai and Gamieldien 2018; Kundu et al.
2018). We use two types of metrics to assess prediction accuracy:
(i) the squared correlation coe%cient (R2) and (ii) the frequency
for which a given data type exhibits the greatest R2, which
we denote as Optimal%. When analyzing each outcome, we
randomly split the data 1000 di"erent times into 80% training
and 20% out-of-sample test sets. In each case, the survival times
are centered and scaled to have mean 0 and variance 1 to
facilitate the interpretation of results. To illustrate the robustness
of the SECT, we apply the GP regression framework using three
di"erent covariance functions. The goal is to show that the
power of the SECT summary statistic is robust to this choice.
Here, suppose that u and v are two di"erent covariate vectors.
We consider the linear (gram) kernel σ (u, v) = uᵀv/p, where
p is the length of the feature vector for a given data type; the
Gaussian kernel σθ (u, v) = exp{−‖u−v‖2/2θ}; and the Cauchy

kernel σθ (u, v) = (1 + θ‖u − v‖2)−1. As previously mentioned,
the last two functions are indexed by a bandwidth or length-
scale parameter θ , which we select via 10-fold cross-validation
over the grid [0.1,10] with step sizes equal to 0.1. Brie$y, a value
of 0 denotes a rigid function, while 10 represents a smoothed
estimator. In Table 1, we present the mean R2 and corresponding
standard errors across testing splits to show how each tumor
characteristic performs while taking into account variability.
This table also lists the estimated bandwidths that generated
these results.

Overall, our study shows that SECT topological summaries
result in the most accurate predictions for survival—particularly
for DFS. For example, using the Cauchy kernel function with
SECT features resulted in the greatest R2 for both DFS and OS
at 0.237 and 0.158, respectively. This led to the SECT being
the optimal tumor characteristic 40.5% of the time for DFS
and 36.5% of the time for OS. There are a few possible expla-
nations for these results. First and foremost, gene expression
is known to be highly variable, particularly in GBM (Verhaak
et al. 2010). Second, volumetric-based measurements only detail
information about tumor size, but this information is likely not
enough to be an e"ective predictor of patient survival on its
own. Instead, one could imagine the geometry of a tumor being
more useful when paired with the spatial location of lesions;
hence, better detailing the severity of the shape. Conversely,
morphometric features describe more focal-based characteris-
tics of malignancies. This attention to texture causes more global
information about the tumor to be missed.

These predictive results may also be due to the nature of
the clinical outcomes that we chose to model. As previously
mentioned, DFS is a prognostic measure of cancer recurrence
and corresponds to the reappearance of the disease a#er initial
treatment. This correlate can o#en be better de!ned than OS,
where the cause of a patient’s death may not necessarily be due
to cancer-based complications. Indeed, each of the tumor char-
acteristics that we consider generally perform better when pre-
dicting DFS versus OS (see Table 1). Nonetheless, measurements
that provided detailed information about one particular aspect
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Table 1. Detailed results for predicting disease free survival (DFS) and overall survival (OS) using Gaussian process regression models de!ned by the linear, Gaussian, and
Cauchy covariance functions, respectively.

Disease free survival (DFS) Overall survival (OS)

Covariance function(s) Data type R2 Optimal% θ̂ R2 Optimal% θ̂

Linear kernel

Gene expression 0.097 (0.013) 18.1% – 0.075 (0.01) 18.4% –
Morphometrics 0.133 (0.015) 23.6% – 0.127 (0.015) 33.9% –

Geometrics 0.137 (0.017) 23.9% – 0.100 (0.012) 23.2% –
SECT 0.198 (0.023) 34.4% – 0.097 (0.012) 24.5% –

Gaussian kernel

Gene expression 0.129 (0.015) 23.6% 4.3 0.082 (0.011) 16.2% 10
Morphometrics 0.113 (0.013) 16.3% 0.1 0.113 (0.012) 22.3% 4.0

Geometrics 0.154 (0.018) 21.1% 5.2 0.102 (0.013) 22.3% 5.0
SECT 0.228 (0.026) 36.1% 0.6 0.168 (0.018) 39.2% 4.2

Cauchy kernel

Gene expression 0.126 (0.015) 26.2% 6.4 0.084 (0.010) 16.7% 10.0
Morphometrics 0.088 (0.012) 15.9% 1.2 0.115 (0.014) 27.9% 4.5

Geometrics 0.116 (0.013) 17.4% 0.2 0.095 (0.012) 18.9% 3.5
SECT 0.237 (0.027) 40.5% 0.6 0.158 (0.017) 36.5% 5.5

NOTE: For each model !t, we consider the predictive utility of four di"erent genomic data types: gene expression, tumor morphometry, tumor geometry, and the proposed
smooth Euler characteristic transform (SECT). Assessment is carried out by using the predictive squared correlation coe#cient (R2), where larger numbers indicate better
performance. We also use Optimal% to denote the percentage of the time that a model exhibits the greatest R2. All values in bold represent the best method in these
two assessment categories. These values are based on 1000 random 80–20 splits for each clinical outcome. Standard errors for each model are given the parentheses.
Lastly, we give estimates for the bandwidth or length-scale parameter θ̂ used to compute each kernel function. Note that θ̂ was found by using 10-fold cross-validation
over the grid [0.1, 10] with step sizes equal to 0.1.

of the disease (e.g., volumetric and morphometric quantities)
are not as relevant as those that aim to illustrate a more compre-
hensive view. Thus, topological features are e"ective predictors
as they provide some notion about both the size and texture of
tumors.

4.3. MRI Speci!c Consequences on Results

In our study, the robustness of the SECT to choice of met-
ric is particularly relevant because the geometric structure of
the brain is known to be !brous—meaning that the brain is
made up of, and connected by, cerebral !ber pathways (Wedeen
et al. 2012). This brings into question the validity of assum-
ing the usual Euclidean metric when quantifying shape. Both
volumetric and morphometric analyses require the speci!ca-
tion of a metric and, in the case where the usual assump-
tion of a Euclidean measure does not apply, an appropriate
one must be constructed. This is not always a straightforward
task. Moreover, in !brous settings, there is also the possibility
for the further requirement of de!ning a geodesic. Examining
topological properties, as opposed to metric-based properties,
bypasses these technical di%culties. Altogether, incorporating
a topological measure that is not based on a metric results
in the $exibility to compare tumors of di"erent sizes more
seamlessly. Subsequently, this also implicitly allows for compar-
isons between di"erent stages of the disease without needing
to account for time of progression. We hypothesize that these
$exible characteristics also contribute to the SECT being a better
predictor of prognosis and survival.

4.4. More Biological Implications

One key implication from our results in DFS is that there
possibly exist correlations between the topology of tumors and
the molecular heterogeneity arising from the activation of dif-

ferent recurrence mechanisms. An example of this relation-
ship occurs in (multifocal) tumors where lesions on opposite
hemispheres of the brain originate from the same oncogenic
e"ects, but events such as therapeutic resistance or cancer recur-
rence happen in only one hemisphere. This variation can be
clinically relevant. It was recently proposed that these type of
topologically based traits are linked to the mutation status of
certain oncogenic relapse drivers (Lee et al. 2017). Hence, there
is growing evidence that potential pathways of progression in
GBM should go beyond the simple consideration of physical
proximity (i.e., closeness in a geometric sense). For instance,
a particular path to recurrence in GBM may be due to ambi-
ent e"ects inherent to a particular hemisphere of the brain.
The prediction results we present in this work suggest that the
topological features extracted by the SECT may be better than
simple geometric summaries at providing insight into biological
phenomena at the molecular level.

5. Discussion

In this article, we sought to quantify images of GBM tumors
given by MRIs for statistical analyses and to demonstrate the
clinical relevance of this information. To this end, we developed
a topological summary statistic transform which maps shapes
into a space that admits an inner product structure that is
amenable to standard functional and nonlinear regression mod-
els. We then used our summary transform to predict the survival
of GBM patients using our speci!ed functional GP regression
model. In this study, we compared the predictive accuracy using
both molecular biomarkers and shape covariates. The SECT
was shown to explain more of the variance in DFS of patients
than all other covariates in a wide variety of models de!ned by
various kernel functions. For the Gaussian and Cauchy kernels,
in particular, the SECT outperformed the other measures in
accounting for the variance in both DFS and OS.
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Despite these results, several interesting future directions and
open questions still remain. For example, in the current study,
we focus solely on measuring how well topological features
predict survival. Many studies in the radiomics space use deep
learning approaches for accurate classi!cation and prediction-
based tasks (Lao et al. 2017; Li et al. 2017; Bibault et al. 2018;
Rathore et al. 2018). Unfortunately, in this work, we did not
have access to data with large enough sample sizes for the
e"ective training of neural networks. However, in the future, it
would be useful to see how our topological summary statistics
may be integrated within deep learning frameworks. To ensure
power, utilizing protected data from current consortium studies
with a large number of participants would be of high interest
(Mueller et al. 2005; Gounder et al. 2015; Sudlow et al. 2015).
Moving away from prediction, it would also be useful to infer
which particular spatial regions of the tumor are most relevant
to clinical outcomes. Recent variable selection approaches for
kernel-based methods can be used to infer the directions and
segments of the Euler curves that are most relevant (Crawford
et al. 2018, 2019). In this case, an important open problem is
having the ability to recover, or partially reconstruct, a shape
based on signi!cant SECT summary statistics. Similarly, the
distance measure for the SECT stated in Equation (7) provides
a framework for comparing the shapes of tumors, and correlat-
ing geometric properties with molecular and clinical features.
Understanding the relationship between therapeutic strategies,
signaling pathway dependence, and tumor shapes would pro-
vide useful information about di"erent forms of GBM and their
etiologies. We conjecture that greater general knowledge about
tumor shape may help in distinguishing true progression from
pseudoprogression. Here, progression refers to the growth of
the tumor itself, while a pseudoprogressing tumor has been
in!ltrated by immune cells and other factors.

Data Availability

The results shown here are in whole or part based upon
data generated by the TCGA Research Network (http://
cancergenome.nih.gov/). DICOM formatted MRI scans and
patient clinical information were taken directly from the
TCIA web portal (https://wiki.cancerimagingarchive.net/display/
Public/TCGA-GBM). Matched molecular data were down-
loaded directly from the Genomic Data Commons (GDC) by
selecting the RNA-Seq tab option (https://portal.gdc.cancer.
gov/projects/TCGA-GBM). Shape-based summary statistics
necessary for replicating this study (i.e., the segmented tumor
images, the volumetric measurements, morphometric data, and
topological summary statistics) are also publicly available on
the SECT GitHub repository.

Software Availability

So#ware to compute the SECT from images and !t the GP
regression model is publicly available in both R and MAT-
LAB code, and located on the repository https://github.com/
lorinanthony/SECT. The MRI images were segmented using
the Medical Imaging Interaction Toolkit with augmented tools
for segmentation (MITKats), which was written C++ and is

located at https://github.com/RabadanLab/MITKats (Chen and
Rabadán 2017).

Supplementary Materials

The supplementary materials for this article consist of supplementary
images to illustrate various mathematical concepts described in the text,
as well as a more detailed discussion on the mathematics underlying the
construction of the SECT.
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