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Figure S1. Characterization of MYC activation in melanomas with acquired resistance to BRAF

pathway blockade, related to Figure 1. A) Evolved PLX4720 (BRAFi)-resistant cells that could be re-

sensitized by the addition of the PI3K/mTOR inhibitor, BEZ235, were classified as having a functional

PI3K-AKT-mTOR pathway bypass signaling resistance mechanism. Cells that were resistant to PLX4720

but not also resistant to the ERK inhibitor, VX-11E, were classified as having a functional RAF-ERK

signaling re-activation resistance mechanism. Cells that could be fully re-sensitized through stable

shRNA-mediated Notch1 suppression were classified as having a Notch1 pathway resistance

mechanism and are described elsewhere (Martz, Ottina, Singleton et al., Sci Signal 2014, 7, ra121). One

evolved resistant cell line could not be re-sensitized by VX-11E, BEZ235, or shNotch1 and was therefore

classified as other/unknown. In all cases, fold change values are relative to parental cells (blue), and data

are means (+/- SD) from three experiments. B) Expression of indicated genes from the BRAF response

signature in cell lines and primary tumors at indicated time points. Error bars indicate 90% confidence

intervals and open circles are outliers. C) Total protein staining for immunoblots shown in Figure 1F,

where for each cell line the left to right ordering of samples is the same as in Figure 1F.
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Figure S2. Functional characterization of MYC in BRAFi resistant melanomas , related to Figure 2. A)

Ectopic expression of MYCT58A or empty vector control in treatment-naïve, BRAFi-sensitive BRAF mutant

melanoma cell lines, determined by immunoblotting. Quantification, bottom panel; total protein, right top

panel; V, pBABE empty vector. B) The indicated cell lines (P, parental and R, resistant), expressing either

shGFP (C) or one of two independent shRNAs targeting MYC (#1 or #2), were immunoblotted for

expression of MYC and vinculin as a loading control to validate protein knockdown. Quantified, bottom

panel. C) The ratio of GI50 values for PLX4720 in parental and resistant cell lines expressing shMYC

(hairpins 1-2) and shGFP. D) MYC protein level was scored on a scale of 1-10, with 10 indicating highest

MYC protein expression and correlated to cell line doubling time. E) A375 R(N) cells were treated with the

indicated doses of JQ1 for 72 hours. Whole cell lysates were immunoblotted for expression of MYC and

vinculin as a loading control. Quantified, right panel. F) Evolved PLX4720-resistant cell lines could be re-

sensitized to PLX4720 or AZD6244 (Malme-3M) by the addition of JQ1 (100 nM) as determined by GI50

assay or clonogenic growth assay (in 3 µM PLX4720). JQ1 + BRAFi treated wells are normalized to the

values of the relevant JQ1 only treated wells to account for non-specific toxicity. P values denote

significance between DMSO and JQ1 treatment in each cell line. G) Effect on clonogenic growth of A375

cells (P) treated with increasing doses of PLX4720 in the presence or absence of JQ1 (100nM). Data are

means (SD) from three experiments. *P < 0.05; **P < 0.01; ****P < 0.001.
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Figure S3. MYC activation and suppression in melanoma cells with

engineered activation of major resistance pathways , related to Figure 3. A)

A375 cells expressing the pathway activating constructs indicated were

immunoblotted for Notch1, phospho-ERK and phospho-AKT1 (Th308) as

evidence of activation of each pathway (left panel). Total protein is shown in the

center panel and protein expression normalized to total protein is shown in the

right panel. B) Quantification of immunoblots shown in Figure 3A. C) Total protein

staining for immunoblots shown in Figure 3C. D) Immunoblot of MYC, phospho-

ERK and ERK1/2 levels in the indicated cell lines treated with DMSO or 1 µM

AZD6244 (“A”, a MEKi) and 1 µM VX-11E (“V”, an ERKi) for 24 hours. At right,

total protein staining. E) UACC-62 cells expressing luciferase or the indicated

pathway activating construct in combination with shGFP (C) or two independent

shMYC constructs (#1 or #2) were immunoblotted for expression of MYC and

vinculin as a loading control. Blots are quantified in the right panel.
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Figure S4. Characterization of the dynamics of MYC expression in intrinsically BRAFi resistant

melanoma cells , related to Figure 4. A) Total protein staining for immunoblot shown in Figure 4A.

Samples are ordered left to right as in Figure 4A. B) Total protein staining for immunoblot shown in

Figure 4B. Samples are ordered left to right as in Figure 4B. C) Quantification of immunoblot in Figure

4F. D) Quantification of immunoblot in Figure 4H. E) WM793 cells were treated with 1 µM PLX4720 for

24 hours after which PLX4720 was withdrawn from the culture media and the cells were cultured

normally for an additional 7 days. Whole cell lysates were prepared at the indicated time points and

immunoblotted for expression of MYC and vinculin as a loading control. Blots are quantified in the right

panel. F) Intrinsically BRAFi-resistant cell lines could be sensitized to PLX4720 by the addition of the

indicated dose of JQ1. JQ1+PLX4720 treated cells are normalized to the viability of cells treated with

JQ1 alone to account for nonspecific toxicity. P values denote significance between DMSO and JQ1

treatment in each cell line. Data are means (SD) from three experiments. *P < 0.05; **P < 0.01; ***P <

0.005; ****P < 0.001.
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Figure S5. Evolution of resistance in treatment naïve melanoma cells with and without genetic or

pharmacological MYC suppression , related to Figure 5. A) A375 cells expressing shGFP or shMYC

were cultured in 3 µM PLX4720 for 12 weeks and cells were counted weekly. Growth rates were

calculated from the cell counts and plotted. B) A375 cells were cultured in 3 µM PLX4720, 100 nM JQ1

or the combination for 12 weeks and cells were counted weekly. Growth rates were calculated from the

cell counts and plotted. The growth rate of parental cells treated with DMSO is indicated with a dashed

line. Data are means (SD) from three experiments. C) Total protein staining for the immunoblot shown in

Figure 5C. D) Growth of Hs695T xenograft tumors treated with vehicle, JQ1 (45 mg/kg/d), dabrafenib

(Dab, 30 mg/kg/d) plus trametinib (Tram, 0.6 mg/kg/d), or the combination over time. Data shown are

mean tumor volume +/- SEM, with n=6-8 mice per group. Waterfall plot showing change in tumor sizes in

the indicated groups on day 70 of treatment.
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Figure S6. Identification of pharmacological strategies to target MYC activated, BRAFi-resistant

melanoma cells , related to Figure 6. Analysis of compound screening data. A) Distribution of Aurora

kinase inhibitors in the primary screen. Secondary GI50 validation assays with B) the RAF inhibitor

PLX4720, C) selected c-KIT inhibitors, and D) selected SRC family kinase inhibitors. E) Fold change in

tigecycline GI50 values of the indicated PLX-resistant lines relative to parental lines. P values indicate

significance between parental and resistant derivatives. F) Fold change in GI50 of the indicated inhibitors in

various PLX4720-resistant evolved cell lines compared to their parental counterparts. Cases where PLX-

resistant cells were more resistant to the indicated inhibitor than their parental line are shaded in red and

cases that the PLX-resistant lines are sensitized are shaded blue. Cases where GI50 was not reached are

indicated with ‘R’ or ‘S.’ G) Combinatorial Index (CI) values for parental A375 or PLX-resistant derivatives at

a range of GI50 values for the combination of PLX4720 and dasatinib. Synergy is indicated by CI values less

than 1. H) A375 cells were cultured in 3 µM PLX4720, 1 µM dasatinib, or the combination for 12 weeks and

cells were counted weekly. Growth rates were calculated from the cell counts and plotted. The growth rate

of parental cells treated with DMSO is indicated with a dashed line. Data are means (SD) of three

experiments. I) List of MYC target genes with differential expression in resistant compared to parental and

shMYC A375 cells.
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Figure S7. Metabolic dependencies in MYC activated, BRAFi-resistant melanoma cells , related to Figure 7. A)

Hierarchical clustering of gene expression data (RNA-seq) from A375 parental cells (Parental), PLX4720-resistant clonal

derivatives (Resistant), resistant A375 cells expressing shMYC (Resistant-shMYC), and parental A375 cells expressing MYCT58A

mutant (Parental-T58A). BRAFi-resistant, MYC-activated models are shown in red; BRAFi-sensitive, MYC-inactive models are

shown in blue. Changes in B) glycolytic intermediates and C) expression of glycolytic enzymes among A375 (P), PLX4720-

resistant A375 (R), and resistant cells expressing shMYC (shM). D) Changes in the incorporation of glucose into TCA cycle from

labeled D-glucose. E) GI50 values of various PLX4720-sensitive (blue) and resistant (red) cell line models treated with

methotrexate. F) A375 cells were cultured in 3 µM PLX4720, 5 mM 2-DG, 10 µM BPTES or the combinations for 12 weeks and

cells were counted weekly. Growth rates were calculated from the cell counts and plotted. G) A375 cells were cultured in 3 µM

PLX4720 and either DMEM with 4.5 g/L glucose and 2 mM glutamine, DMEM with 0.45 g/L glucose and 2 mM glutamine,

DMEM with 4.5 g/L glucose and 0.2 mM glutamine, or DMEM with 0.45 g/L glucose and 0.2 mM glutamine for 12 weeks and

cells were counted weekly. Growth rates were calculated from the cell counts and plotted. The growth rate of parental cells in

DMEM with 4.5 g/L glucose and 2 mM glutamine is indicated with the blue dashed line. The growth rate of parental cells in

DMEM with the various depleted media is indicated with the dashed lines. Growth rates in the depleted media were calculated

from daily cell counts over 7 days of culture. H) The growth rate of A375 cells in DMEM containing 0.45 g/L glucose and 0.2 mM

glutamine was measured daily over 7 days. This growth rate was used to calculate total cell numbers over 12 weeks of growth in

the double depleted media and compared to cell counts with PLX4720 treatment. I) Projected cell numbers of A375 cultured in 3

µM PLX4720, 10 nM methotrexate or the triple combination. J) Combinatorial Index (CI) values for parental A375 or PLX-

resistant derivatives at a range of growth inhibition (GI) values for the combination of PLX4720 and 2-DG or the combination of

PLX4720 and BPTES. Synergy is indicated by CI values less than 1. Data are means (SD) from three experiments.
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EXTENDED EXPERIMENTAL PROCEDURES

1 Statistical Modeling of Genomic Data

Gene Expression Data and Preprocessing Procedures

Microarray gene expression data (Rizos et al., 2014) was collected that included 59 BRAFV600-mutant

melanoma metastatic samples with 38 progressing and 21 matched pretreatment samples collected from

30 patients. Only two patients, indexed as 5 and 10, were analyzed pre-treatment, on-treatment, and on-

relapse (which we term as “progression”). We only utilized the samples in this dataset which had matched

pre-treatment and progressed tumors (this included patients 5 and 10). To increase the sample size of the

on-treatment tumors used to obtain the BRAFi/MEKi response signature, we added matched pre- and on-

treatment microarray gene expression data of melanoma cell lines from two sets of data: M229, M238, and

M249 (Nazarian et al., 2010); and SkMel1, SkMel5, SkMel19, SkMel28, and Malme3M (Pratilas et al.,

2009). These data are publicly available and can be accessed in the NCBI’s Gene Expression Omnibus

under the GEO SuperSeries accession numbers: GSE50509 (Rizos et al., 2014), GSE24862 (Nazarian et al.,

2010), and GSE10087 (Pratilas et al., 2009).

Collapsing Probes and Data Normalization

Expression data were obtained using the Illumina HumanHT-12 V4.0 Expression Beadchip (Rizos et al.,

2014), the Affymetrix Human Gene 1.0 ST Array (Pratilas et al., 2009), and the Affymetrix Human

Genome U133A 2.0 Array (Nazarian et al., 2010), respectively. we took the following preprocessing and

normalization steps to correct for batch effects and other possible confounders. First, using the annotations

of each Affymetrix/Illumina Chip/Platform, each probe of each sample in each experiment was mapped to

its corresponding HUGO gene name and symbol. Next, assuming that there is no principled way to account

for “missingness”, we eliminate the probes that did not match to known genes. For each sample in all

three experiments, we follow previous works (Li et al., 2011) and took the probes that mapped to multiple

genes and averaged their expression values. Next, we identified the mapped genes that were common in

all three chips/platforms and only used these genes in subsequent statistical and pathway analyses. All

three datasets were RMA corrected and log2-transformed. We utilize base 2 because any transformed



2-fold ratio will be converted to an ±1 scale. This interpretation of fold change helped with interpreting

of BAKR regression coefficients and the underlying marginal covariate interactions. Lastly, we perform a

final cross-platform quantile normalization (Rudy and Valafar, 2011) on the combined dataset. The goal

of the cross-platform normalization was to dilute some of the random noise created by chip-to-chip batch

effects and strengthen biological signal in the data. After completing these steps, we were left with a final

data set consisting of n = 68 samples and p = 11,657 genes.

Splitting the Data: Phases I and II

The data were split into two phases: Phase I (i.e. generation of the BRAFi/MEKi response signature)

corresponded to pre-treatment versus on-treatment samples (n = 39); Phase II (i.e. identification of genes

that return to pre-treatment status) corresponded to on-treatment versus post-treatment samples (n = 39).

Deriving a Gene Signature

In this section, we will use the Phase I dataset to infer a BRAFi/MEKi response signature G of MAPK

pathway addiction. In this study, we use a logistic version of the Bayesian approximate kernel regression

(BAKR-logit) model (Crawford et al., 2017) to derive this collection of genes. Note that this methodology

is advantageous for statistically analyzing cancer genomic data such as this for a few notable reasons. One,

there is no reason to assume a linear relationship between the changes in gene expression and the effect

of a given therapeutic strategy. Moreover, crosstalk between signaling pathways, as well as between the

genes and nodes within these pathways, has been suggested to be associated with drug response (Bostock,

2005; Bender and Nahta, 2008; Yamaguchi et al., 2014).

Notation

Let X denote the observed n× p genotype matrix, where each element xij is the expression value of the j th

gene from the i th sample. Next, let y = [y1, ... , yn] represent the following n-dimensional binary response

vector with

yi =


1 if MAPK pathway is activated (pre-treatment);

0 if MAPK pathway is deactivated (on-treatment).
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Alternatively, we say that y is drawn as n-independent Bernoulli random variables, such that yi
iid∼ Bern(πi ).

Logistic Bayesian Approximate Kernel Regression Model

Consider the following logit link function between the gene expression and binary treatment classes:

logit(E[yi | xi ]) = logit(πi ) = log
(

πi
1− πi

)
= x⊺i β,

where x⊺i is the i th row of the n × p expression matrix X, and β = [β1, ... ,βp] is an unknown vector of

regression coefficients for each gene j = 1, ... , p. To facilitate statistical inference and interpretation of

this logistic model setup, we define a latent variable z = [z1, ... , zn] such that yi = 1 if zi > 0, and yi = 0

otherwise (Kinney and Dunson, 2007). In other words, each zi is logistically distributed with location

parameter x⊺i β, with a corresponding probability density function:

L(zi ;β) =
exp{−(zi − x⊺i β)}

[1 + exp{−(zi − x⊺i β)}]2
. (1)

It was shown that this relationship is approximately a non-central tν-distribution with location parameter

x⊺i β and scale parameter σ2ε (Kinney and Dunson, 2007). This means that we may express (1) as a scale

mixture of normals, represented in matrix notation as the following:

z = Xβ + ε, ε ∼ MVN(0,σ2εΩ
−1), (2)

where Ω = Diag(ω1, ... ,ωn) is an n × n diagonal matrix and MVN(µ,Σ) denotes a multivariate normal

distribution with mean vector µ and covariance matrix Σ.

As in most gene expression studies, the number of samples is far fewer than the number of genes

(i.e. p ≫ n). For this reason, low rank factorizations of the design matrix X are used both for numerical

stability as well as for statistical efficiency (West, 2003; Liang et al., 2007; Liang et al., 2009; de los Campos

et al., 2010; Crossa et al., 2014; Crawford et al., 2017). In addition, there is no reason to assume a linear

relationship between the latent variable z and the changes in gene expression as is assumed in Equation

(2). To increase predictive power, we used a nonlinear regression model that can capture higher-order

interactions between genes, while also providing effect size estimates for each gene. This model builds on

the classical Gaussian process — or the reproducing kernel Hilbert space(RKHS) model — and is formerly

3



referred to as the Bayesian approximate kernel regression (BAKR) model (Crawford et al., 2017). We

summarize the relevant aspects of the BAKR model that we used to infer signatures.

We first specify a RKHS model — a class of models used extensively in machine learning, as well as in

genetics, to improve predictive accuracy, and capture higher order nonlinear effects (Gianola et al., 2006;

Liang et al., 2007; Liang et al., 2009; de los Campos et al., 2010; Crossa et al., 2014; Howard et al., 2014):

z = Kα+ ε with α ∼ MVN(0,σ2αK−1) and ε ∼ MVN(0,σ2εΩ
−1), (3)

where K is an n × n kernel matrix whose entries are nonlinear functions of pairs of expression profiles,

and α is an n-vector of random kernel coefficients. By definition, the kernel matrix K is symmetric and

semi-positive definite:

(1) k(xi , xj) = k(xj , xi ) ∀ i , j ,

(2)
∑

i

∑
j k(xi , xj)αiαj ≥ 0 ∀ αi ,αj ∈ R.

The model form in Equation (3) turns a p-dimensional optimization problem into an optimization problem

over just n parameters.

A key feature of the BAKR modeling framework is its ability to infer effect sizes for genes while implicitly

modeling all possible higher-order interactions between them (Crawford et al., 2017). In high-dimensional

settings, this is something that is not feasible for linear models (Yu et al., 2006; Logsdon et al., 2010;

Zhang et al., 2010; Guan and Stephens, 2011; Lippert et al., 2011; Zhou and Stephens, 2012; Zhou et al.,

2013) or other variable selection testing strategies (Hauck Jr and Donner, 1977; Kleinbaum and Klein,

2010; Li et al., 2011; Wu et al., 2011).

The advantage of BAKR over standard RKHS models is that RKHS models cannot provide estimates of

effect sizes for each variable. BAKR overcomes this hurdle by using properties of shift-invariant kernel func-

tions and employing a map between the RKHS model (i.e Equation (3)) and a linear model (i.e. Equation

(2)). More specifically, shift-invariant kernel functions can be written as a weighted infinite sum of Fourier

bases {ψi (x)}∞i=1 = ψ(x), such that k(∥xi − xj∥) = ψ(xi )
⊺ψ(xj). Though never constructed in practice,

under Bochner’s Theorem (Bochner, 1934), a p-dimensional approximation of these bases may be con-

structed using the Fourier Transform of the kernel function such that k(∥xi − xj∥) ≈
∑p

j=1 ψj(xi )
⊺ψj(xj) =

k̃(∥xi − xj∥) (Rahimi and Recht, 2007; Băzăvan et al., 2012). This allows for a reformulation of Equation

4



(3) using an approximate kernel matrix of the form:

z = K̃α+ ε with α ∼ MVN(0,σ2αK̃−1
) and ε ∼ MVN(0,σ2εΩ

−1). (4)

Going forward, we denote Ψ as the infinite Fourier basis matrix such that K = Ψ⊺Ψ, and Ψ̃ to represent

the p-term finite approximation such that K ≈ Ψ̃
⊺
Ψ̃ = K̃. These approximate bases can be used in a linear

mapping to relate α to β in order to extract an effect size for each gene (Crawford et al., 2017). Because

of this linear mapping, BAKR can obtain posterior samples of β to quantify phenotype association strength

and identify associated genes. This is key to defining a robust BRAFi/MEKi response signature. BAKR

has the flexibility to take on the approximation of any shift-invariant kernel to model a variety of different

genetic architectures; however, we detail our model strictly under the approximation of the Gaussian kernel

function (Williams and Seeger, 2001; Vert et al., 2004; Chang et al., 2010):

k̃(∥xi − xj∥) ≈ k(∥xi − xj∥) = exp
{
−1

p
||xi − xj ||2

}
,

where ||x||2 =
∑n

i=1 x2 is the ℓ2-norm.

Complete Model Specification

We now state the complete specification of BAKR-logit. Since the approximation of any shift-invariant

kernel matrix is also symmetric and semi-positive definite, we took advantage of a low-rank approximation

of the nonlinear kernel matrix K̃ to dramatically reduce computational cost (West, 2003; Liang et al., 2007;

Liang et al., 2009; de los Campos et al., 2010; Crossa et al., 2014; Crawford et al., 2017). This was done

by using the spectral decomposition of the approximate Gaussian kernel matrix K̃. Specifically:

yi =


1 if zi > 0

0 if zi ≤ 0

for i = 1, ... , n

z = Ũθ + ε, ε ∼ MVN(0,σ2εΩ
−1) (5)

θ ∼ MVNq(0,σ
2
θΛ̃) (6)

ωi ,σ
−2
θ ∼ Γ(ν/2, ν/2), σ2ε =

ν − 2

3ν
π2 (7)
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where Γ(a, b) is used to represent a Gamma distribution with shape a and rate b. In practice, we follow

previous studies (Kinney and Dunson, 2007) and fix ν = 7.3. Note that we utilize the empirical kernel factor

representation where K̃ = ŨΛ̃Ũ⊺ and θ = Λ̃Ũ⊺
α. For numerical stability and reduction of computational

complexity, eigenvectors corresponding to smaller eigenvalues were truncated (West, 2003; Lopes and West,

2004; Liang et al., 2007; Pillai et al., 2007; Liang et al., 2009); so without loss of generality, we implement

BAKR by considering Ũ to be an n × q matrix containing the eigenvectors of K̃ (i.e. ŨŨ⊺
= In), and Λ̃

as a q × q diagonal matrix of the top q eigenvalues of K̃. This consideration represented an even greater

reduction in required computation since q ≤ n ≪ p. In this study, we chose q to represent the number of

eigenvalues that explain 99% of cumulative variance in K̃.

Because K̃ approximates a matrix that is shift-invariant, we utilized an inverse mapping that allows for

inference to be made on the p-dimensional genes β in the original genetic space (Crawford et al., 2017):

β̃ = X†Ψ̃
⊺
(Λ̃Ũ⊺K̃−1

Ψ̃
⊺
)−1θ̂,

where θ̂ is an estimate of the kernel factor coefficients drawn from the posterior distribution p(θ | y).

Furthermore, since we were strictly concerned with a case in which p ≫ n, the inverse of XX⊺ exists and

hence we let X† = X⊺(XX⊺)−1. By plugging in this quantity, the linear map simplified to

β̃ = X⊺(XX⊺)−1Ũθ̂. (8)

We implemented the mapping from the standard RKHS model to effect sizes as a deterministic step in an

MCMC Gibbs sampler resulting in empirical draws β̃ from an implied posterior distribution p(β | y).

Posterior Sampling and Inference

Based on the complete BAKR-logit specification, a standard Gibbs sampler was derived from the following

joint posterior distribution:

p(z,θ,σ−2
θ ,Ω | y) ∝

[
n∏

i=1

(
σ2ε
ωi

)− 1
2

exp
{
− ωi

2σ2ε
(zi − ũ⊺

i θ)
2

}
1(Ai )

]
×

n∏
i=1

ω
ν
2
−1

i exp
{
−ν
2
ωi

}
× (σ2θ)

− q
2 exp

{
− 1

2σ2θ
θ⊺Λ̃

−1
θ

}
× (σ−2

θ )
ν
2
−1exp

{
−ν
2
σ−2
θ

}
(9)
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where 1(·) is an indicator function and each member of the set A = [A1, ... ,An] is defined as

Ai =


{zi : zi > 0} if yi = 1,

{zi : zi ≤ 0} if yi = 0.

(10)

After a selection of initial values, samples of parameters and hyper-parameters were drawn sequentially from

their respective complete conditional posterior distributions, which we detail below. At each algorithmic

step, with all conditioning parameters fixed at their most recent values, we updated the iterates until we

created a set of relevant MCMC draws. The complete posterior distributions are given:

(1) For i = 1, .., n

z(t+1)
i | z(t),θ,σ2θ ,Ω, y ∼


N(ũ⊺

i θ,σ
2
εω

−1
i )1(z(t)i > 0) if z(t)i > 0,

N(ũ⊺
i θ,σ

2
εω

−1
i )1(z(t)i ≤ 0) if z(t)i ≤ 0;

(2) θ | z,σ2θ ,Ω, y ∼ MVN(m∗
θ,V∗

θ) where V∗
θ = σ2εσ

2
θ(σ

2
εΛ̃

−1
+ σ2θŨ⊺

ΩŨ)−1 and m∗
θ =

1
σ2
ε
V∗

θŨ
⊺
Ωz;

(3) β̃ = X⊺(XX⊺)−1Ũθ;

(4) σ−2
θ | z,θ,Ω, y ∼ Γ(a∗θ, b

∗
θ) where a∗θ = 1

2(ν + q) and b∗θ = 1
2(ν + θ

⊺Λ̃
−1
θ);

(5) For i = 1, .., n

ωi | z,θ,σθ, y ∼ Γ(a∗ω, b
∗
ω) where a∗ω = 1

2(ν + 1) and b∗ω = 1
2σ2

ε
(νσ2ε + e2i ), with ei = zi − ũ⊺

i θ.

In this study, we obtained over 20,000 MCMC samples from the BAKR-logit Gibbs sampler. These samples

were selected from a run of a 110,000 iterations, where we keep every 5th sample, and then follow up with

burn-in of 2,000 samples.

Variable Selection: Local False Sign Rate

We are reminded that the purpose of using the BAKR-logit in this study is to discover a set of genes G

(i.e. a gene signature) whose expression levels robustly change following treatment with BRAFi/MEKi in

BRAF -mutant melanomas. We used the estimate of the original effect sizes β̃ as a metric of the relevance

for each gene. Specifically, the metric we used to determine the members of G is the local false sign rate

(lfsr), which is analogous to the local false discovery rate (Efron, 2007). The lfsr provides a measure of

7



confidence in the sign of the effect rather than confidence of the effect being non-zero (Stephens, 2017).

Alternatively, we say that we were more concerned with controlling the minimization of “type S errors”

(i.e. the errors of sign), rather than the traditional type I errors (Gelman and Tuerlinckx, 2013). Therefore,

we choose to be confident in the directional change of a gene’s regulatory pattern (i.e. up-regulation or

down-regulation) in the presence of drug. Given posterior samples β̃ for each gene j , we defined the

corresponding local false sign rate as (Stephens, 2017)

lfsrj = min[p(βj ≥ 0 | y, β̃), p(βj ≤ 0 | y, β̃)]. (11)

This selection procedure is a post-hoc deterministic computation applied to the MCMC samples of β. The

BRAFi/MEKi response signature G is then defined as the set of genes that satisfy G = {j : lfsrj ≤ c}. In

this study, we subjectively choose c = 0.01. This resulted in a BRAFi/MEKi response signature of p∗ = 68

genes.

Model Comparisons

To illustrate the utility of the BAKR-logit model, we compared our approach to two linear models which

use t-distributed test statistics to identify differentially expressed genes. The first method is a gene-wise

association analysis that uses a parametric empirical Bayes approach to borrow strength between genes in

order to moderate effect sizes and residual variances (Smyth, 2004). These resulting summary statistics

are used to compute Benjamini-Hochberg corrected p-values (BH q-values) for every observed gene, where

those with q-values below q ≤ 0.05 are called significantly differentially expressed. We fit this model using

the publicly available R package limma (Ritchie et al., 2015). The second approach that we considered

identifies differentially expressed genes using the classical likelihood ratio test (LRT) (Peng et al., 2002).

Briefly, for each gene in turn, we computed a likelihood ratio comparing an alternative model with the

gene’s expression level to a null model containing just the intercept. Similarly, we then considered those

genes with multiplicty corrected p-values below 0.05 as those associated with MAPK inhibition. We fit

this score test for nested parametric linear models using the lrtest function in the publicly available R

package lmtest (Zeileis and Hothorn, 2002).

Here, we evaluated the ability of the BAKR-logit model, limma, and the LRT to identify genes that fully

characterize MAPK inhibition in BRAF -mutant melanoma. We are reminded that using the BAKR-logit

8



resulted in a BRAFi/MEKi response signature of p∗ = 68 genes. Comparatively, the limma model detected

16 BRAFi/MEKi response signature genes, while the LRT BRAFi/MEKi response signature contained only

8 genes. Notedly, there was substantial overlap between the signature genes identified by the LRT, and

those selected by the limma and the BAKR-logit models (see Tables S1 and S7). Again, we want to

highlight that the advantage of the BAKR framework is the fact that it also implicitly considers a marginal

notion of interaction effects between a given gene and all other genes (Crawford et al., 2017). Hence,

BAKR identifies genes as being significant that the other linear modeling approaches fail to detect. For

instance, while all three methods select the proto-oncogene MYC as being a key downstream component

in MAPK inhibition, BAKR is the only methodology to also select genes such as ID2 and SKI as being

potential predictors of BRAFi/MEKi response. Briefly, overexpression of the ID2 gene has been shown to

be required for MYC signaling (Lasorella et al., 2000). Similarly, oncogenic interactions between SKI and

MYC, coupled with repression of the TGF-β signaling pathway, has been suggested to be consequential to

long term treatment strategies in human melanomas (Sun et al., 1999). Therefore, we conclude that the

BRAFi/MEKi response signature derived by the BAKR-logit model gives a more complete illustration of

MAPK inhibition in BRAF -mutant melanoma than both the limma linear model and the LRT.

Lastly, we want to stress the one caveat that this model comparison is strictly empirical in nature.

Given that our aim here is to make novel discoveries, we are not afforded any “true” answers like there

would be in a typical power simulation study. Nonetheless, BAKR identified the same signature genes as

the opposing methods, as well as notable others that the literature suggests to be contextually relevant. A

more fundamentally comprehensive review of BAKR, its predictive accuracy, and its power to detect true

causal genes and other genetic variants can be found in the original publication (Crawford et al., 2017).

Software and Model Implementation

Software for implementing the BAKR modeling framework is carried out in R and Rcpp code, which is

freely available at https://github.com/lorinanthony/BAKR.

Identifying Elements of Relapse

Inference of MAPK signaling pathway activity was just the first step in discovering the genes and/or the

cellular processes that are important for therapeutic resistance and melanoma reoccurrence. To search for

a potential convergent effector of resistance, we began by reasoning that such an effector should follow

9
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two transitional rules: (1) it should be regulated downstream of the driver oncogene, and (2) it should

rebound to at least pre-treatment expression or activation states at resistance, independent of the upstream

mechanisms driving resistance. We considered signature genes that satisfy this criteria as a signature for

patient relapse and we referred to this set as R. Specifically, we used Bayes factors (BF) and marginal

likelihoods to determine which of the p∗ = 68 members of G belonged in R.

Bayes Factor Computation

In this section, we develop the methodology for identifying an expression signature for melanoma progression

(i.e. the members of R). We begin by introducing the Bayes factor, which is the probability of observing

the data under one condition relative to another (Kass and Raftery, 1995). In particular, we used the Phase

II dataset to obtain R. We redefine the binary phenotype y∗, where now y∗i = 1 denotes a progressed

(relapsed) tumor and y∗i = 0 corresponds to a treated sample. Now let p(y∗ |M) be the probability

of observing the phenotype under some model M, and p(Θ∗ |M) be a prior belief about that model’s

parameters (i.e. gene coefficients in our case). The Bayes factor between two models M1 and M0 is then

defined as

BF10 =
p(y∗ |M1)

p(y∗ |M0)
=

∫
p(y∗ |Θ∗

1,M1)p(Θ
∗
1 |M1)dΘ

∗
1∫

p(y∗ |Θ∗
0,M0)p(Θ

∗
0 |M0)dΘ

∗
0

. (12)

Here, the subscript identifies which models are being compared, while the corresponding order denotes

which model is in the numerator and which is in the denominator. As previously shown (Kass and Raftery,

1995; Rouder and Morey, 2012), the Bayes factor is interpretable without recourse to additional criteria

or qualification. For example, BF10 = 5 means that the data are 5 times more probable under M1 than

under M0.

We are particularly interested in individual members of the gene signature that track that well with

progression — meaning R ⊆ G. In other words, we want to identify the genes that positively contribute

to the explanation of melanoma reoccurrence, conditioned on none of the other genes being present. The

reason for this approach is that we are strictly concerned with finding potential drivers of resistance. This

is accomplished by computing Bayes factors, while comparing an intercept term (null model, M0) to

the addition of each signature gene independently (alternative models, Mj for j = 1, ... , p∗). Typically,

Equation (12) can be computationally expensive as one considers all possible combinations of explanatory

10



variables (Berger and Pericchi, 1996; Barbieri and Berger, 2004). However, given the scope of the problem

in question, our logic reduces this search to just p∗ = 68 Bayes factors that needed to be calculated. Again,

we define p∗ as the number of genes included in our melanoma signature, (i.e. |G| = p∗ = 68).

We used the Laplace method (Guan and Stephens, 2008) to approximate the Bayes factor for the binary

responses. Assume that each phenotype is modeled by a logistic regression model,

Mj : log
(Pr[y∗i = 1]

Pr[y∗i = 0]

)
= µ+ x∗ijβ∗j = f (µ,β∗j ), (13)

where x∗ij is the j th element of the i th row in the n × g expression matrix X∗ containing the treated and

progressed samples from our data and the genes from our signature (i.e. a subset of the Phase II dataset).

Hence, β∗j is defined as the effect parameter for the j th signature gene in G. Lastly, we define µ as a

common intercept. Then under the logistic function, Equation (13) can be stated as:

Mj : π∗i = Pr[y∗i = 1] =
exp{f (µ,β∗j )}

1 + exp{f (µ,β∗j )}
. (14)

By using Equation (14), the log-likelihood of the data is specified as

ℓ(y∗;µ,β∗j ) =
∑
i

[y∗i logπ∗i + (1− y∗i )log(1− π∗i )]

=
∑
i

y∗i f (µ,β∗j ) +
∑
i

log(1 + exp{f (µ,β∗j )}). (15)

Under the null model, M0 with j = 0, we assume that β∗j = 0 and a normal prior on µ

p(µ |M0) ∝ exp
{
− 1

2σ2µ
µ2

}
.

For the alternative models, where j = 1, ... , p∗, we put a normal prior on the gene coefficients where

p(Θ∗ |Mj) = p(µ,β∗j |Mj) ∝ exp
{
− 1

2σ2µ
µ2 − 1

2σ2βj

β∗2j

}
,

with Θ∗ = (µ,β∗). Hence for each j , Equation (12) then becomes the following:

BFj0 =
p(y∗ |Mj)

p(y∗ |M0)
=

∫
ℓ(Θ∗; y∗,Mj)p(Θ

∗ |Mj)dΘ
∗∫

ℓ(µ; y∗,M0)p(µ |M0)dµ
(16)
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Following previous studies (Guan and Stephens, 2008), we may approximate each of the integrals by the

Laplace method

∫
exp {h(Θ∗)} dΘ∗ ≈ (2π)

d
2 |HΘ∗∗ |−

1
2 exp {h(Θ∗∗)} . (17)

where d is the dimension of the integral being approximated, Θ∗∗ is the value at which h is at its maximum,

and |HΘ∗∗ | is the absolute value of the determinant of the Hessian matrix of h evaluated at Θ∗∗. Under

the null, M0, and alternative models, Mj , respectively:

h(µ) = ℓ(µ; y∗) + log p(µ);

h(Θ∗) = ℓ(Θ∗; y∗) + log p(Θ∗).

The derivation of the Hessian matrices in each model case are given in full detail in cited works (Guan and

Stephens, 2008).

Bayes Factor Interpretation

We computed the Bayes factor in Equation (16) using the approximation in Equation (17) a total of p∗

times — each time comparing one signature gene in G to the null model containing just the intercept.

Taking the log of each ratio j , we examined across results and considered genes with logBFj0 > 0 to track

well with progression. Therefore, the set of signature genes satisfying this condition are called relapse genes

and said to be members of the set R. Alternatively, we say that R = {j : logBFj0 > 0}. To further aid in

this interpretation, we also implement a t-test on the relapse genes to show that the Bayes Factor results

also mirror that of a standard p-value (see Table S1).

Gene Set Analysis

To investigate the biological relevance of the signature G and drivers of relapse R, we cross referenced each

member of the two sets with gene sets compiled in the molecular signature database (MSigDB) compiled at

the Broad Institute (Subramanian et al., 2005). We used gene set enrichment methods to identify classes

of genes that are over/underrepresented given a signature, for example G or R. In this study, we utilized

the global test (Goeman et al., 2004) and its corresponding R package gloabaltest for gene set analysis.
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Briefly, this statistical approach points to whether or not significantly enriched/depleted groups have a

higher association with a given phenotype than what is expected by chance. Specifically, it utilizes a logistic

regression model on expression measurements to describe a binary phenotype (e.g. 1 ≡ treated sample;

0 ≡ pre-treated sample). The null hypothesis assumes that all regression coefficients for the members in

a particular gene set are zero. Alternatively, we describe this procedure as a test to see if the components

within a tested gene set have substantial predictive ability for classifying the targeted phenotypic response

(Goeman et al., 2004). This is determined by analyzing the random biological variation between subjects,

rather than comparing a gene set with random counterparts. As previously shown (Goeman et al., 2006;

Goeman et al., 2011), the global test is designed to have optimal power in the situation where a gene set

has many small non-zero regression coefficients. Hence, it is directed to find gene sets for which many

genes are associated with the phenotype, even if said relation is minimal. We therefore use the global test

model as a way to look for “dysregulation” and differential expression among gene sets. A gene set is

considered to be dysregulated if it has a Benjamini-Hochberg corrected p-value (BH q-value) below 0.05.

Determining MYC Reactivation on Relapse

Here, we detail the procedure used to determine the probability of MYC reactivation in each of the pro-

gressed tumor samples. Once again, we defined reactivation as a gene that satisfies the aforementioned

transitional requirements. For this computation, we specifically looked at the percent change in MYC

expression between each pre-treated tumor and its matched relapse sample(s). The intuition behind com-

puting this change is that if MYC is said to be reactivated when a patient relapses, then its expression

levels should be about the same or greater in the corresponding matched progressed tumors. For every

patient i , we used the following to compute the percent change in MYC expression:

%change(i) = pre(i)− post(i)
pre(i) × 100% for i = 1, ... , n.

These percent changes were then standardized into z-scores and the probability of reactivation was com-

puted via the transformation 1 − Φ(z), where Φ is the cumulative distribution function of the standard

normal distribution. Qualitatively, this value Φ(z) is similar to a lower one-tailed p-value and is interpreted

as the probability of seeing something more extreme than what has already been observed in the data. In

our context, this value can be defined as the probability of seeing MYC deactivated when a patient re-
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lapses. Therefore, we took the complement of a patient relapsing, which we state as 1−Φ(z), to represent

the probability of seeing MYC reactivated when a patient relapses. Progressed tumor samples that had

probability above 0.5 (i.e. greater than random chance) were said to have MYC reactivated.

2 Cell Lines

A375, Colo679, UACC-62, Malme-3M, WM793 and WM1745 cells were grown in RPMI 1640 (Life Tech-

nologies Corporation, Carlsbad, CA) supplemented with 10% fetal bovine serum (Sigma-Aldrich Cor-

poration, St. Louis, MO) and 1% penicillin/streptomycin (Life Technologies Corporation). SK-MEL-

28, SK-MEL-5, A2058, RPMI-7951, Lox IMVI and Hs294T cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) (Life Technologies Corporation) with 10% fetal bovine serum and 1% peni-

cillin/streptomycin.

3 Chemicals

2-DG was prepared in PBS at 1 M. VX-11E, piperlongumine and PD0332 were prepared as 20 mM stock

solutions in DMSO. CHIR-99021, HMR-1275, AZD1152, LY2603618, and AZD7762 were prepared in

DMSO at 10 mM. CYC202 was prepared in DMSO at 5 mM. All other inhibitors were prepared as 100 mM

stock solutions in DMSO.

4 GI50 Assay

To measure the GI50 values of specific inhibitors, cells were trypsinized and seeded at 5,000 cells/well in

96-well plates. After a 24-hour incubation, diluent (typically DMSO) or concentrated 10-fold dilutions

of the indicated inhibitors (at 1:1000) were added to the cells to yield the highest concentration (see

Chemicals). After a 3-day incubation with the treatment, cell viability was assessed with the CellTiter-Glo

luminescent viability assay (Promega Corporation, Durham, NC) according to manufacturer’s instructions.

Growth inhibition was calculated as a percentage of diluent-treated cells and GI50 values were determined.
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5 Sensitization Assays

In order to quantify the effect of resistance pathway inhibition on the sensitivity of cell lines to ERK pathway

inhibition, small molecule sensitization assays were performed as previously described (Martz et al., 2014).

The ERK pathway inhibitor GI50 values were determined as described in the previous section with the

addition of DMSO added to the media at a 1:1000 dilution. The ERK pathway inhibitor GI50 values were

also determined with the indicated inhibitor in the background at the indicated dose. GI50 values were

then determined to be the dose of ERK pathway inhibitor that resulted in half-maximal growth inhibition

relative to the viability of non-ERK pathway inhibitor-only wells.

6 Immunoblotting

In order to measure protein levels in whole cell lysates, aliquots of cell extracts prepared in lysis buffer

(0.5% Triton X-100, 50 mM β-glycerophosphate (pH 7.2), 0.1 mM Na3VO4, 2 mM MgCl2, 1 mM EGTA,

1 mM DTT, 0.3 M NaCl, 2 µg/mL leupeptin and 4 µg/mL aprotinin (Sigma-Aldrich)) were submitted to

SDS-PAGE. Where indicated, proteins were run on Mini-PROTEAN TGX Stain-Free Precast Gels (Bio-

Rad) and total protein was visualized on the ChemiDoc Imaging System (Biorad). After electrophoretic

transfer to PDMF, filters were blocked in 5% BSA and probed overnight at 4◦C with the following pri-

mary antibodies and dilutions: c-MYC (1:200; #764 Santa Cruz Biotechnology, Dallas, TX or 1:10,000

ab32072 Abcam, Cambridge, MA), phospho-ERK (1:1000; #4376 Cell Signaling Technology, Danvers,

MA), ERK1/2 (1:1000; #4695 Cell Signaling Technology), Notch1 (1:1000; #3608 Cell Signaling Tech-

nology), phospho-AKT1 (1:1000; #13038 Cell Signaling Technology), AKT1 (1:1000; #4691 Cell Signaling

Technology), vinculin (1:500; #4650 Cell Signaling Technology), α-tubulin (1:1000, #2125 Cell Signal-

ing Technology), β-actin (1:1000, #4970 Cell Signaling Technology). For quantification of immunoblots,

where indicated, densitometry was performed with ImageJ software, background was subtracted and band

intensity was normalized to loading control intensity. Alternatively, total protein images and Image Lab

software (Bio-Rad) was used to normalize band intensity to total lane protein content.
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7 Lentivirus Preparation and DNA Constructs

All expression clones were prepared in lentiviral form as previously described (Martz et al., 2014). In brief,

vectors were packaged in 293T cells with an overnight incubation with Fugene (Promega Corporation),

p∆VPR and pVSV-G. The virus-containing media was collected after 48 and 72 hours and filtered with

a 0.45 µm filter and stored at -80◦C until use with 16 µg/mL polybrene (Sigma-Aldrich). The shRNA

constructs and other expression vectors are listed in Table S6.

8 In vitro Adaption of Inhibitor Resistant Cells

Parental cells were either exposed to escalating doses of inhibitor until logarithmic growth resumed or

exposed to a high dose (3 µM) of inhibitor (PLX4720, AZD6244 or VX-11E) and the resultant resistant

clones were expanded and cultured. Parental cell lines were cultured concurrently with DMSO. Resistant

cell lines were maintained in routine culture with the addition of 3 µM inhibitor. All resistant and DMSO

parental control lines were submitted to STR profiling by the Duke University DNA Analysis Facility upon

the acquisition of resistance in order to confirm their authenticity.

9 Annexin V Apoptosis Assay

The induction of apoptosis was quantified as described previously (Martz et al., 2014). Briefly, cells were

plated in triplicate at 200,000 cells per well in six-well plates. The following day, the growth media was

removed and replaced with fresh media containing the indicated dose of drug or diluent (typically DMSO).

After a 72-hour incubation in drug, cells were washed in PBS twice and resuspended in a buffer composed of

10 mM HEPES, 140 mM NaCl and 2.5 mM CaCl2 (BD Biosciences, San Jose, CA). Apoptosis was quantified

using allophycocyanin-conjugated Annexin V and viability was assessed with 7-Amino-actinomycin D (BD

Bioscience). Gating was defined using untreated/unstained cells and treatments were evaluated at 20,000

counts using BD FACSVantage SE.
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10 RNA Extraction and Quantitative Real-Time PCR

PCR primers were obtained from Integrated DNA Technologies and are as follows: ACTB forward 5’-

CTTCCAGCCTTCCTTCCTGG-3,’ reverse 5’-AATGCCAGGGTACATGGTGG-3,’ MYC forward 5’-CCACC

AGCAGCGACTCTG-3,’ reverse 5’-TGTGAGGAGGTTTGCTGTGG-3’. Average cycle threshold (Ct) values

were determined for MYC and normalized to the reference gene, β-actin. Relative gene expression was

determined using the ∆∆Ct method.

11 Gene Expression Analysis

A375 cells (parental and evolved PLX4720-resistant clonal derivatives) expressing shGFP (parental and

resistant) or shMYC (resistant only) were grown to ∼80% confluency in triplicate in normal growth media

and submitted to gene expression analysis. RNA-Seq libraries were generated using I-L-070 Kapa stranded

mRNA-seq kit (Kappa Biosystems (Wilmington, MA) and the final libraries checked for quality control on

a Qubit Fluorometer (Thermo Fisher) and Agilent 2200 Tapestation (Agilent Technologies), which was

followed by sequencing on the Illumina HiSeq2000/2500 V4 (Illumina). RNA-seq data was processed by

the Duke University Genome Analysis and Bioinformatics Core Facility using the TrimGalore toolkit which

employs Cutadapt to trim low quality bases and Illumina sequencing adapters from the 3’ end of the

reads. Only reads that were 20nt or longer after trimming were kept for further analysis. Reads were

mapped to the GRCm37r75 version of the human genome and transcriptome (Kersey et al., 2012) using

the STAR RNA-seq alignment tool (Dobin et al., 2013). Reads were kept for subsequent analysis if they

mapped to a single genomic location. Gene counts were compiled using the HTSeq tool. Only genes that

had at least 10 reads in any given library were used in subsequent analysis. Normalization and differential

expression was carried out using the DESeq2 (Love et al., 2014) Bioconductor (Huber et al., 2015) package

with the R statistical programming environment. The false discovery rate was calculated to control for

multiple hypothesis testing. Gene set enrichment analysis (Mootha et al., 2003) was performed to identify

differentially regulated pathways and gene ontology terms for each of the comparisons performed.
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