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(d) γ = 0.5% and ρ = 0.8

Figure S1. Empirical power to detect simulated causal interacting makers at a
genome-wide significance level. Group 1 and 2 causal markers are colored in grey and purple,
respectively. Figures show the power of LT-MAPIT to identify SNPs in each causal group under the
Bonferroni-corrected significance level α = 8.3× 10−6. Phenotypes were generated on the liability scale
with disease prevalence in the population set to γ = 0.1% in Figures (a) and (b), and γ = 0.5% in
Figures (c) and (d). Here, the parameters ρ = 0.5 in (a) and (c), and ρ = 0.8 in (b) and (d), are used to
determine the proportion of phenotypic variance (on the liability scale) that is contributed by
interaction effects. Results are based on 100 simulated replicates and the lines on each bar represent a
95% standard error interval due to resampling.
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(b) γ = 0.1% and ρ = 0.8

Figure S2. Power comparison for detecting group 1 and group 2 causal SNPs. The
association mapping ability of LT-MAPIT (red) is compared to five competing methods: (i) the original
linear mixed model version of MAPIT (green), (ii) the binary mixed model MAPIT-Logit (orange) fit
by using penalized quasi-likelihoods (PQL), (iii) the linear exhaustive search model PLINK (pink), (iv)
the generalized linear model PLINK-Logit (light blue), and (v) the liability threshold model LT-PLINK
(blue). Each approach is assessed under four simulation scenarios. Phenotypes were generated on the
liability scale with disease prevalence in the population set to γ = 0.1%. Here, the parameters ρ = 0.5
in Figure (a) and ρ = 0.8 in Figure (b) are used to determine the proportion of phenotypic variance (on
the liability scale) that is contributed by interaction effects. The y-axis gives the rate at which true
causal variants were identified (TPR) at a 1% false positive rate (FPR). Results are based on 100
simulated replicates and the lines on each bar represent a 95% standard error interval due to resampling.
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Figure S3. Power comparison for detecting group 1 and group 2 causal SNPs. The
association mapping ability of LT-MAPIT (red) is compared to five competing methods: (i) the original
linear mixed model version of MAPIT (green), (ii) the binary mixed model MAPIT-Logit (orange) fit
by using penalized quasi-likelihoods (PQL), (iii) the linear exhaustive search model PLINK (pink), (iv)
the generalized linear model PLINK-Logit (light blue), and (v) the liability threshold model LT-PLINK
(blue). Each approach is assessed under four simulation scenarios. Phenotypes were generated on the
liability scale with disease prevalence in the population set to γ = 0.5%. Here, the parameters ρ = 0.5
in Figure (a) and ρ = 0.8 in Figure (b) are used to determine the proportion of phenotypic variance (on
the liability scale) that is contributed by interaction effects. The y-axis gives the rate at which true
causal variants were identified (TPR) at a 1% false positive rate (FPR). Results are based on 100
simulated replicates and the lines on each bar represent a 95% standard error interval due to resampling.
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(c) γ = 0.5% and ρ = 0.5
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(d) γ = 0.5% and ρ = 0.8

Figure S4. Power comparison with exhaustive search procedures to detect epistatic pairs.
LT-MAPIT (red) is assessed as an initial step in a pairwise epistatic filtration process compared against
the more conventional exhaustive search LT-PLINK (blue), which serves as a baseline. While using
LT-MAPIT, the search for epistatic pairs occurs between the top ranked {50, 100, 250, 500} significant
marginally associated SNPs. Both methods are evaluated under four simulation scenarios. Phenotypes
were generated on the liability scale with disease prevalence in the population set to γ = 0.1% in
Figures (a) and (b), and γ = 0.5% in Figures (c) and (d). Here, the parameters ρ = 0.5 in (a) and (c),
and ρ = 0.8 in (b) and (d), are used to determine the proportion of phenotypic variance (on the liability
scale) that is contributed by interaction effects. The y-axis gives the rate at which true causal epistatic
pairs were identified. Results are based on an average performance across 100 simulated replicates.
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(b) Group 2 SNPs (ρ = 0.5)
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(c) Group 1 SNPs (ρ = 0.8)
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(d) Group 2 SNPs (ρ = 0.8)

Figure S5. Power comparison for detecting group 1 and group 2 causal SNPs when the
assumed disease prevalence (γ) is misspecified. In simulations, the true disease prevalence in the
population is set to γ = 0.25%. Compared are two sets of liability threshold (LT) regression models
that are fit by incorrectly assuming γ̃ = 0.1% (low) and γ̃ = 0.5% (high), respectively. Specifically,
LT-MAPIT (red and green) is compared to LT-PLINK (blue and orange) across all four simulation
scenarios. Assessments for the group 1 SNPs are given in Figures (a) and (c), while evaluations for the
group 2 SNPs are in Figures (b) and (d). The parameters ρ = 0.5 in (a) and (c), and ρ = 0.8 in (b) and
(d), are used to determine the proportion of phenotypic variance (on the liability scale) that is
contributed by interaction effects. The y-axis gives the rate at which true causal variants were identified
(TPR) at a 1% false positive rate (FPR). Results are based on 100 replicates. The lines represent 95%
confidence interval due to simulated replicates.
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(b) ρ = 0.8

Figure S6. Power comparison with exhaustive search procedures to detect epistatic pairs
when the assumed disease prevalence (γ) is misspecified. In simulations, the true disease
prevalence in the population is set to γ = 0.1%. Compared are two sets of liability threshold (LT)
regression models that are fit by incorrectly assuming γ̃ = 0.1% (low) and γ̃ = 0.5% (high), respectively.
Specifically, LT-MAPIT (red and green) is assessed as an initial step in a pairwise epistatic filtration
process compared against the more conventional exhaustive search LT-PLINK (blue and orange), which
serves as a baseline. While using LT-MAPIT, the search for epistatic pairs occurs between the top
ranked {50, 100, 250, 500} significant marginally associated SNPs. Both methods are evaluated under
four simulation scenarios. The parameters ρ = 0.5 in Figure (a) and ρ = 0.8 in Figure (b) are used to
determine the proportion of phenotypic variance (on the liability scale) that is contributed by
interaction effects. The y-axis gives the rate at which true causal epistatic pairs were identified. Results
are based on an average performance across 100 simulated replicates.
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Figure S7. Genome-wide scans for marginal epistatic effects in rheumatoid arthritis (RA)
from the WTCCC data set. Depicted are the −log10(P ) transformed LT-MAPIT p-values of
quality-control-positive SNPs plotted against their genomic positions. Note that LT-MAPIT was
implemented with three different genetic relatedness matrices: the genome-wide matrix KGW in Figure
(a), a cis-based matrix Kcis in Figure (b), and a trans-based matrix Ktrans in Figure (c), respectively.
The (red) horizontal line indicates a Bonferroni-corrected significance threshold α = 1.37× 10−7. Note
that all panels are truncated at −log10(P ) = 12 for consistency and presentation, although for some
SNPs have stronger marginally epistatic associations with p-values P ≈ 0 (indicated by > 12). Gene
annotations are derived from the dbSNP database provided by the National Center for Biotechnology
Information.
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Figure S8. Genome-wide scans for marginal epistatic effects in type 1 diabetes (T1D)
from the WTCCC data set. Depicted are the −log10(P ) transformed LT-MAPIT p-values of
quality-control-positive SNPs plotted against their genomic positions. Note that LT-MAPIT was
implemented with three different genetic relatedness matrices: the genome-wide matrix KGW in Figure
(a), a cis-based matrix Kcis in Figure (b), and a trans-based matrix Ktrans in Figure (c), respectively.
The (red) horizontal line indicates a Bonferroni-corrected significance threshold α = 1.37× 10−7. Note
that all panels are truncated at −log10(P ) = 12 for consistency and presentation, although for some
SNPs have stronger marginally epistatic associations with p-values P ≈ 0 (indicated by > 12). Gene
annotations are derived from the dbSNP database provided by the National Center for Biotechnology
Information.
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(a) Low-Dimensional Filter
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(b) High-Dimensional Filter

Figure S9. Power comparison with exhaustive search procedures to detect epistatic pairs
for rheumatoid arthritis (RA) and type 1 diabetes (T1D) from the WTCCC data set.
Figures depict the number of significant pairwise interactions (y-axis) identified by LT-MAPIT when
using three different genetic relatedness matrices: the genome-wide matrix KGW (red), a cis-based
matrix Kcis (blue), and a trans-based matrix Ktrans (green), respectively. Figure (a) is based on
searching between the top v = {10, 50, 100, 200} marginally associated variants, while results in Figure
(b) considers the top v = {500, 1000, 2000, 5000} variants (labeled on the x-axis). We use the number of
significant pairs identified by fully exhaustive search model LT-PLINK as a baseline comparison (solid
black line). An interaction found by using the LT-MAPIT filtration was deemed signifiant if it had a
joint p-value below the Bonferroni-corrected threshold α = 0.05/C(v, 2) — where C(•, 2) denotes the
binomial coefficient enumerating all possible SNP pairs. In the case of LT-PLINK, we consider two
variants to be a significantly associated epistatic pair if they have a joint p-value below the threshold
α = 7.6× 10−13, which corresponds to the Bonferroni-correction used after examining all possible
genome-wide SNP pairs across the data set. Overall, at this level, LT-PLINK 75 detected significant
pairs in RA, and 2753 significant pairs in T1D.
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Supplementary Tables

Table S1. Disease prevalences (γ) for each trait in the WTCCC data set. The seven diseases
analyzed include: bipolar disorder (BD), coronary artery disease (CAD), Crohn’s disease (CD),
hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D).
References denote the past work from which these values were taken.

BD CAD CD HT RA T1D T2D

Disease Prevalence (γ) 0.5% 5.6% 0.1% 26.4% 1% 0.5% 3%

Reference(s) [1] [2] [3] [4] [5] [6] [7]

Table S2. The marginal epistatic p-values for all SNPs as computed by LT-MAPIT for
bipolar disease (BD) in the WTCCC data set. LT-MAPIT was fit while using three different
genetic relatedness matrices: the genome-wide matrix KGW (GW) on page 1, a cis-based matrix Kcis

(Cis) on page 2, and a trans-based matrix Ktrans (Trans) on page 3, respectively. Also listed are the
chromosome location and physical position (bp) for each SNP. (XLSX)

Table S3. The marginal epistatic p-values for all SNPs as computed by LT-MAPIT for
coronary artery disease (CAD) in the WTCCC data set. LT-MAPIT was fit while using three
different genetic relatedness matrices: the genome-wide matrix KGW (GW) on page 1, a cis-based
matrix Kcis (Cis) on page 2, and a trans-based matrix Ktrans (Trans) on page 3, respectively. Also
listed are the chromosome location and physical position (bp) for each SNP. (XLSX)

Table S4. The marginal epistatic p-values for all SNPs as computed by LT-MAPIT for
Crohn’s disease (CD) in the WTCCC data set. LT-MAPIT was fit while using three different
genetic relatedness matrices: the genome-wide matrix KGW (GW) on page 1, a cis-based matrix Kcis

(Cis) on page 2, and a trans-based matrix Ktrans (Trans) on page 3, respectively. Also listed are the
chromosome location and physical position (bp) for each SNP. (XLSX)

Table S5. The marginal epistatic p-values for all SNPs as computed by LT-MAPIT for
hypertension (HT) in the WTCCC data set. LT-MAPIT was fit while using three different
genetic relatedness matrices: the genome-wide matrix KGW (GW) on page 1, a cis-based matrix Kcis

(Cis) on page 2, and a trans-based matrix Ktrans (Trans) on page 3, respectively. Also listed are the
chromosome location and physical position (bp) for each SNP. (XLSX)
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Table S6. The marginal epistatic p-values for all SNPs as computed by LT-MAPIT for
rheumatoid arthritis (RA) in the WTCCC data set. LT-MAPIT was fit while using three
different genetic relatedness matrices: the genome-wide matrix KGW (GW) on page 1, a cis-based
matrix Kcis (Cis) on page 2, and a trans-based matrix Ktrans (Trans) on page 3, respectively. Also
listed are the chromosome location and physical position (bp) for each SNP. (XLSX)

Table S7. The marginal epistatic p-values for all SNPs as computed by LT-MAPIT for
type 1 diabetes (T1D) in the WTCCC data set. LT-MAPIT was fit while using three different
genetic relatedness matrices: the genome-wide matrix KGW (GW) on page 1, a cis-based matrix Kcis

(Cis) on page 2, and a trans-based matrix Ktrans (Trans) on page 3, respectively. Also listed are the
chromosome location and physical position (bp) for each SNP. (XLSX)

Table S8. The marginal epistatic p-values for all SNPs as computed by LT-MAPIT for
type 2 diabetes (T2D) in the WTCCC data set. LT-MAPIT was fit while using three different
genetic relatedness matrices: the genome-wide matrix KGW (GW) on page 1, a cis-based matrix Kcis

(Cis) on page 2, and a trans-based matrix Ktrans (Trans) on page 3, respectively. Also listed are the
chromosome location and physical position (bp) for each SNP. (XLSX)

Table S9. Summary table of the number of epistatic associations identified in the analysis
of the WTCCC data set. The seven diseases analyzed include: bipolar disorder (BD), coronary
artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1
diabetes (T1D), and type 2 diabetes (T2D). Compared are the number of SNPs with significant
marginal epistatic associations, as well as the number of significant epistatic pairs, found by LT-MAPIT
and LT-PLINK. LT-MAPIT was fit while using three different genetic relatedness matrices: the
genome-wide matrix KGW (GW), a cis-based matrix Kcis (Cis), and a trans-based matrix Ktrans

(Trans), respectively. We use the fully exhaustive search model LT-PLINK as a baseline comparison.
Interactions were found with LT-MAPIT by first implementing an initial filter to find significant
marginally epistatic SNPs, and then searching among these select variants to find significant pairs.
Alternatively, marginal associations were found via LT-PLINK if a given SNP is a member of a
significant epistatic pair.

Association Type Analysis BD CAD CD HT RA T1D T2D

Marginal Effects

GW 3 3 2 0 3 19 3

Cis 0 0 0 2 60 397 0

Trans 3 3 2 0 3 23 2

LT-PLINK 3 3 0 3 49 366 5

Pairwise Interactions

GW 0 0 0 0 0 39 0

Cis 0 0 0 0 443 10392 0

Trans 0 0 0 0 0 44 0

LT-PLINK 2 2 0 2 75 2753 3
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Supplementary Text: MAPIT Binary Mixed Model Extension

We describe the logistic modeling approach for the MArginal ePIstasis Test (MAPIT-Logit) in detail
here. Begin by considering the following generalized linear mixed model (GLMM)

yi ∼ B(πi), i = 1, . . . , n

where y = (y1, . . . , yn)ᵀ is an n-vector of Bernoulli distributed (binary) traits for n individuals, and
π = (π1, . . . , πn)ᵀ is an unknown parameter that represents the underlying probability that the i-th
individual is a case. Under this modeling approach, we use a logit link function ψ(•) and model the data
as a linear combination of the following parameters

ψ(π) = log

(
π

1− π

)
= η, η = µ1 + xrβr + mr + gr (S1)

where (as in the main text) µ is an intercept term multiplied with an n-dimensional vector of ones 1;
xr is an n-dimensional genotype vector for the r-th variant that is the focus of the model; βr is the
corresponding additive effect size; mr =

∑
s6=r xsβs is the combined additive effects from all other s 6= r

variants, and effectively represents the additive effect of the r-th variant under the polygenic background
of all other variants; mr ∼ N (0, ω2Kr) with Kr = X−rX

ᵀ
−r/(p− 1) being the genetic relatedness matrix

computed using genotypes from all variants other than the r-th; gr =
∑
s 6=r(xr ◦xs)θs is the summation

of all pairwise interaction effects xr ◦ xs between the r-th variant and all other variants s 6= r; and
gr ∼ N (0, σ2Gr) with Gr = DrKrDr representing a relatedness matrix computed based on pairwise
interaction terms between the r-th variant and all other variants. Here, we denote Dr = diag(xr) to be
an n × n diagonal matrix with the genotype vector xr as its diagonal elements. It is important to note
that both Kr and Gr change with every new marker r that is considered.

PQL Inference Algorithm

We fit the above MAPIT-logistic model using the penalized quasi-likelihood (PQL) approach [8–10].
Briefly, PQL employs an iterative numerical optimization procedure where, in each iteration, we introduce
a set of pseudo-data ỹ to replace the originally observed binary data y. The generation of this pseudo-
data ỹ is based on the second order Taylor expansion of the conditional distribution P(yi |mr,gr) where
we make use of the first and second order moments E(y |mr,gr) and V(y |mr,gr), respectively. With
the realization of the pseudo-data ỹ, the complex likelihood function for the original data y is replaced
by a much simpler likelihood function, thereby alleviating much of the computational burden that comes
with fitting GLMMs. As a result, we can perform marginal epistatic inference and update parameters
using a standard average information (AI) algorithm for linear mixed models [11–13].

We now describe the detailed estimation and inference procedure for MAPIT-Logit. Here, the case-
control labels y are assumed to be independently distributed conditional on the unobserved random
effects ur = mr + gr and fixed effects µ1 + xrβr. Each of these independent conditional distributions
have the following mean and variance, respectively,

E(y |µ, βr,ur) = ϑr = ψ−1(µ1 + xrβr + ur) (S2)

V(y |µ, βr,ur) = v(ϑr), (S3)

where, in addition to previous notation, v(t) = nt(1− t) is the corresponding Bernoulli variance function.
The joint quasi-likelihood function for the r-th variant is then given as

Q(µ, βr, ω
2, σ2) = log

∫ [ n∏
i=1

Q(µ, βr,ur)

]
P(ur |ω2, σ2) dur,
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which notedly also serves as an approximation to the joint conditional likelihood. Next, we may follow
previous works [10] and use a Laplace approximation to further approximate the above joint function

Q̃(µ, βr, ω
2, σ2) =

1

2
log|VrWr − I|+

n∑
i=1

Q(µ, βr, ũr)−
1

2
ũᵀ
rV
−1
r ũr, (S4)

where Vr = ω2Kr + σ2Gr, ũr = arg maxur
(
∑n
i=1Q(µ, βr |ur)− 1

2uᵀ
rV
−1
r ur, Wr = diag(1/ψ′(ϑr)) is a

diagonal weight matrix with corresponding elements ϑr, and |•| is used to denote the matrix determinant
function.

We treat the approximated quasi-likelihood function Q̃ in Equation (S4) as the target function from
which we obtain estimates for (µ, βr,ur) and (ω2, σ2) via an iterative procedure. To begin, we first
obtain estimates for (µ, βr,ur) conditional on the current estimates of (ω2, σ2). Here, we assume that
the iterative weights vary slowly with respect to the conditional mean. Namely,

∂Wr

∂ϑr
≈ 0.

We then obtain the first order derivatives with respect to either the fixed effects (µ, βr) or the random
effects ur, and set the corresponding two first order derivatives to zero

x̃ᵀ
rWr∆r(y − ϑr) = 0, (S5)

∆r(y − ϑr)−V−1r ur = 0, (S6)

where x̃r = [1,xr] and ∆ = diag(ψ′(ϑr)). We may now formally define the pseudo-data as

ỹr = ηr + ψ′(ϑr)(y − ϑr). (S7)

With this formulation of pseudo-data, Equation (S5) simplifies to

ur = VrH
−1
r (ỹr − x̃rbr) , (S8)

where Hr = W−1
r + Vr and br = (µ, βr)

ᵀ. By substituting Equation (S8) into Equation (S6), we can
obtain the following parameter estimates

b̂r = (x̃ᵀ
rH
−1
r x̃r)

−1x̃ᵀ
rH
−1
r ỹr (S9)

ûr = VrH
−1
r

(
ỹr − x̃rb̂r

)
(S10)

Note that both of these equations depend on estimates of the all variance components — we will use
δ = (ω2, σ2) to represent their joint shorthand notation. As a result, we want to obtain the estimates for
these parameters, conditional on the current values of (µ, βr,ur). To do so, we first integrate out the fix
effects from Equation (S4) to obtain the following restricted likelihood

Q̃R(δ) = cr +
1

2
log|Hr| −

1

2
log|x̃ᵀ

rH
−1
r x̃r| −

1

2
ỹᵀ
rPrỹr. (S11)

where Pr = H−1r −H−1r x̃ᵀ
r (x̃ᵀ

rH
−1
r x̃r)

−1x̃rH
−1
r is a variant specific projection matrix, and cr = [(c +

1)log(2π)− log|Wr|]/2 is a variant specific constant term. The following AI algorithm is used to obtain
the desired variance component estimates. In particular, we obtain the first derivatives as

∂Q̃R(δ)

∂ω2
=

1

2
[ỹᵀ
rPrKrPrỹr − tr(PrKr)],
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∂Q̃R(δ)

∂σ2
=

1

2
[ỹᵀ
rPrGrPrỹr − tr(PrGr)],

where tr(•) denotes the matrix function. The second derivatives are then computed as the following. For
the additive variance component of the polygenic background ω2,

∂2Q̃R(δ)

∂ω2∂ω2
=

1

2
tr(KrPrKrPr)− ỹᵀ

rPrKrPrKrPrỹr,

∂2Q̃R(δ)

∂ω2∂σ2
=

1

2
tr(KrPrGrPr)− ỹᵀ

rPrKrPrGrPrỹr.

And for the marginal epistatic variance component σ2 (i.e. the main parameter of interest),

∂2Q̃R(δ)

∂σ2∂ω2
=

1

2
tr(GrPrKrPr)− ỹᵀ

rPrGrPrKrPrỹr,

∂2Q̃R(δ)

∂σ2∂σ2
=

1

2
tr(GrPrGrPr)− ỹᵀ

rPrGrPrGrPrỹr.

Note that, by definition, the second derivatives constitute the observed information matrix. Because the
elements in the expected information matrix only include the trace terms of the above four equations, we
can obtain the following variant specific average information (AI) matrix

Ar =

[
ỹᵀ
rPrKrPrKrPrỹr ỹᵀ

rPrKrPrGrPrỹr

ỹᵀ
rPrGrPrKrPrỹr ỹᵀ

rPrGrPrGrPrỹr

]
(S12)

With the first order derivatives and the AI matrix, we can perform a Newton-Raphson update with the
AI algorithm to jointly obtain estimates δ̂ = (ω̂2, σ̂2). In particular, this logistic version of MAPIT
implements a PQL algorithm that consists of steps detailed in previous works [8–10]. Namely, we first

initialize parameters µ(0), β
(0)
r , δ(0) = (ω2(0), σ2(0)). Next, we obtain the pseudo-data ỹr as detailed in

Equation (S7). Finally, we set t = 1 and iterate between the following:

1. Update δ(t) = δ(t−1) + A−1r

(
∂Q̃R(δ)/∂δ

)
.

2. Update
{
µ(t), β

(t)
r ,u

(t)
r

}
using δ(t) and ỹ

(t−1)
r as in Equations (S9) and (S10).

3. Update ỹ
(t)
r using

{
µ(t), β

(t)
r ,u

(t)
r

}
as in Equation (S7).

At the end of each iterate, reset t = t+ 1, and repeat these steps until convergence. In practice we deter-
mine convergence to be the instance where the difference between two consecutive parameter estimates
is smaller than ε = 1× 10−5.

Hypothesis Testing Procedure

Recall from the main text that our goal is to identify variants that interact with other variants, and
to avoid explicitly searching for pairwise interactions. To do so, we want to test the appropriate null
hypothesis H0 : σ2

r = 0 for each variant r in the data. The following detailed hypothesis testing procedure
stems from the fact that, under this null, the marginal epistatic variance component estimates follow a
mixture of chi-square distributions σ̂2

r ∼
∑q
j=1 λjχ

2
1,j . Here, χ2

1,j denote chi-square random variables
with one degree of freedom, and (λ1, . . . , λq) represent the ordered (and quickly decaying) non-zero
eigenvalues of the corresponding matrix PrGr/2. Unfortunately, the calculation of these eigenvalues is
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computationally intensive and exact probabilities associated with a mixture of chi-square distributions is
difficult to compute analytically [14]. As a result, we make use of the Satterthwaite method to approximate
the mixture of chi-square distributions with a scaled chi-square distribution [15]. Namely,

q∑
i=1

λjχ
2
1,j ≈ κχ2

ν

where the scale parameter κ and the degrees of freedom ν are empirically computed from

κ = Ir/er, ν = e2r/2Ir,

where er = tr(PrGr) and Ir = tr(PrGrPrGr)/2 − tr(PrGrPr)
2/tr(PrPr). Altogether, the final bias-

corrected test statistic for the Satterthwaite method is given by

S(σ̂2) =
1

2κ
(ỹᵀ
rPrGrPrỹr), (S13)

which, under the null hypothesis, follows a distribution that may be approximated by χ2
ν .

Software Implementation

For the simulations detailed in the main text, we fit the MAPIT-Logit regression model using PQLseq
[8–10], which is an R package for implementing mixed model association for count data via penalized
quasi-likelihoods [16]. PQLseq is publicly available at http://www.xzlab.org/software.html.
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