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Figure S1. Approximate time and memory requirements of Grid-LMM as a function of sample size. (a) Computational
times for the most costly steps of typical mixed model fitting algorithms: inverting an n⇥n covariance matrix (generally using
a Cholesky decomposition), and multiplying the inverse matrix by an n-vector (i.e. a vector of marker genotypes). The red
curve shows the time required for a Cholesky decomposition using the base R function chol as a function of n. The green
curve shows the time required for a Cholesky matrix-by-marker matrix multiplication with 1⇥105 markers, as a function of n.
The blue curve is the sum of the Cholesky decomposition and matrix-vector multiplication operations for a single grid-cell in
Grid-LMM with 1⇥105 markers. The green and blue curves are barely distinguishable across most of the range because the
Cholesky decomposition is generally not limiting. The purple curve would be the expected time for a separate Cholesky
decomposition and matrix-vector multiplication for each marker in a GWAS with 1⇥105 markers (i.e. the cost of a typical
exact-LMM method such as LDAK for a single iteration). Both the Grid-LMM and LDAK times are per-iteration.
Grid-LMM requires this time at each grid cell. LDAK requires multiple iterations for the REML optimization separately for
each marker. Generally, Grid-LMM will evaluate more grid cells than LDAK requires iterations per test. However this will not
cause a reversal in the relative time requirements unless a very large grid is used. (b) Memory requirements for storing an n⇥n
Cholesky matrix as a function of sample size. In both panels, the curves were extrapolated based on tests with n between 256
and 4096 (actual times shown with points). All timings were estimated using base R functions.
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Figure S2. Accuracy of the log-transformed p-values across the 107 Arabidopsis phenotypes [1]. GWASs were run for
each phenotype using 216,130 markers and up to 199 accessions, with a single random effect controlling for additive genetic
relationships among lines. For each phenotype (represented as a single point in the plots), we compared the exact Wald-test
-log10(p) calculated by GEMMA to p-values calculated by the approximate methods EMMAX, and Grid-LMM using either the
naive approach with a complete grid of size 0.1 h2-units, or the fast heuristic algorithm Grid-LMM-fast with a fine grid size
of 0.01-h2 units. Grid-LMM p-values were always at least as accurate (as measured by root mean-squared-error, RMSE) as
those calculated by EMMAX. Specifically, p-values calculated with a fine grid-size of 0.01 (using the fast algorithm) were nearly
indistinguishable from those of GEMMA, except in the rare cases where the REML surface was not unimodal. This was
generally restricted to a small subset of rare markers with small-moderate effect sizes, and only occurred for a few traits. In
these cases, the complete — but more coarse — grid search of Grid-LMM with step sizes of 0.1 was more accurate.
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Figure S3. Genomic control inflation factors for simulated data. Simulated datasets were created based on the Atwell
genotype data and the G⇥E analysis. We randomly selected 10,000 markers, generated simulated data with different
proportions of additive (G) and gene-environment interaction (G⇥ E) variation for each marker, and calculated Wald
F-statistics for an interaction between the marker and the environment. Bars show an estimate of genomic control inflation
factors for each of the following five methods. exact-LMM-G+GxE is an exact LMM algorithm fit with LDAK. This model
included both random effects and the marker effect. At a genome-wide scale, it is very slow, with computational complexity
O(ptn3). exact-LMM-G and exact-LMM-GxE are exact LMM algorithms, similar to GEMMA, which included only one
random effect and the marker effect. null-LMM is an approximate method similar to pylmm that conditions on variance
components estimated under a null model with no marker effect. It was run with both random effects. Grid-LMM was run with
a grid size of 0.1 h2-units and included both random effects and the marker effect. The l values were calculated as the ratio
between the median value of the the F-statistics returned by each model and the median value of a F1,316�4 distribution. The
horizontal line shows the expected value l = 1 under the true model.
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Figure S4. Power analysis for simulated data. Bars show the genome-wide power for randomly selected SNPs in the
Atwell genotype data under simulations with different proportions of additive (G) and gene-environment interaction (G⇥E)
variation with different marker effect sizes. Simulations were generated as described in Figure S3, and included only a single
marker with zero main effect and G⇥E effects scaled to a defined percentage of the phenotypic variation. The remaining
phenotypic variation was simulated from a multivariate normal distribution constructed by appropriately weighting the additive
relationship matrix, the G⇥E covariance matrix, and the uncorrelated residual variation. Each simulation was run separately for
10,000 randomly selected markers. Wald F-statistics from each method were normalized by dividing by the genomic control
inflation factor computed for Figure S3, and then p-values were calculated and compared to the Bonferroni corrected threshold
P = 2⇥10�7 to determine significance.
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Figure S5. Comparison of REML estimates between Grid-LMM and LDAK for 20,843 Arabidopsis genes. (a) REML
estimates for the additive genetic variance (variance component for KA). (b) REML estimates for the epistatic genetic variance
(variance component for KE ).
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Figure S6. Comparison of REML estimates for the additive genetic variance between models with and without an
additional pairwise-epistasis random effect for 20,843 Arabidopsis genes. Both models were fit using Grid-LMM with a
grid size of 0.05 h2 units. Point positions are jittered for clarity.
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Figure S7. Posterior distributions of variance components for two genes under the half-Student-t(3,0,10) prior.
Panels (b) and (c) of Figure 3 in the main text are repeated, except the half-Student-t(3,0,10) prior on the standard deviation of
the variance components of KA and KE for the random effects was applied to each grid vertex. The prior was approximated by
simulating 1⇥104 independent draws for sA, sE and se, converting these to prior draws for h2

A and h2
E , and then measuring the

proportion of draws closest to each grid vertex.

7/10



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
K_A

K_
E

σ~half−t(3,0,10)a

0

1

2

3

0.00 0.25 0.50 0.75 1.00
K_A

de
ns
ity

b

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
K_A

K_
E

σ2~invGamma(2,1)c

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
K_A

de
ns
ity

d

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
K_A

K_
E

h2~uniform(0,1)e

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
K_A

de
ns
ity

f

Figure S8. Inverse-Gamma and half-Student-t priors are informative for variance component proportions. We
compare the implied prior distributions on variance component proportions for three classes of priors in a two-random effect
model (e.g. KA and KE as random effects plus uncorrelated random error). (a)-(b) Each standard deviation parameter was
assigned a half-Student-t prior with 3 degrees of freedom and scale parameter of 10. (c)-(d) Each variance parameter was
assigned an inverse-Gamma prior with shape parameter 2 and scale parameter 1. (e)-(g) A uniform prior was applied to the
2-dimensional simplex of [h2

A,h
2
E ,h

2
e ]. This is the default prior in GridLMM and equivalent to all analyses reported in the main

text. (a)-(c)-(e) 2D-density plots for the two variance component proportions. Lighter blue denotes higher prior density.
(b)-(d)-(f) Marginal densities for the KA variance component proportion under each prior. The half-Student-t prior implies high
probability that only one variance component is important. The inverse-Gamma prior implies high probability that all variance
component proportions are non-zero.
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Tables

Table S1. Markers associated with heterogenous stock mice body weight only when accounting for non-additive genetic covariance. Markers with
-log10(p)> 3 on chromosomes 4 and 11 are shown. Position information for each marker is derived from [2]. Other studies that identified the same marker associations
are listed. WTCHG: Wellcome Trust Center Heterogeneous Stock Mice. LG,SM Advanced Intercross: F9 and F10 generation mice from of an intercross between LG/J
and SM/J strains selected for differences in body size.

marker Chr bp cM Effect Size -log10(p) Genes References Phenotype Population
rs4224463 4 44561913 20.8151 -0.2307899 5.827733 Trmt10b, Exosc3 [3] Starting weight WTCHG
rs6313392 4 44568868 20.81513 -0.2307899 5.827733 Exosc3 [3] Starting weight WTCHG
rs3665393 4 44721094 20.81515 -0.2313425 5.941238 Shb [3] Starting weight WTCHG
rs13477678 4 44734525 20.81518 -0.1715087 3.978578 Trim14, Coro2a, Shb — — —
rs3668228 4 44764150 20.8152 -0.2307148 5.794518 Shb [3] Starting weight WTCHG
rs13477682 4 45785592 21.78908 -0.1339141 3.199823 Gm16731 — — —
rs13481023 11 51651037 29.3193 0.1682438 4.543509 Gm26551, Cdkl3 [4] Tibia length LG,SM Advanced Intercross
rs8243055 11 51893791 29.31933 0.1682438 4.543509 Gm26551, Tcf7 — — —
rs6173994 11 52168577 29.51397 0.1599403 4.19647 — — — —
rs3668680 11 55712245 31.26964 -0.1584908 3.386805 Gm12239 — — —
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Supplemental Methods
Bayesian posterior and Bayes Factor derivation
We describe our approach for approximating Bayesian posteriors of variance component proportions, as well as calculating
Bayes Factors for linear mixed model (LMM) comparisons, using Grid-LMM. Consider the following Bayesian hierarchical
regression model specification:

y = Xbbb + e
e ⇠ N(000,s2V)

bbb ⇠ N(µµµ,s2YYY)

s2 ⇠ IG(a,b),

(1)

where y is an n⇥ 1 vector of observations, X is an n⇥ p design matrix, bbb is an p⇥ 1 coefficient vector, and e is an n⇥ 1
vector of independent and identically distributed errors. The joint prior distribution p(µµµ,s2) is said to be the normal-inverse-
gamma NIG(µµµ,YYY,a,b) distribution. The residual covariance matrix V = ÂL

l=1 h
2
l
Kl + h

2
e
I is the result of integrating over

all random effects, and h
2
e
+ÂL

l=1 h
2
l
= 1 with the h

2
l

parameters giving the proportion of the total random effect variation
contributed by each random effect. Our main objective is to conduct inference on these variance component proportions
qqq = [h2

1, . . . ,h
2
L
,h2

e
]. Secondarily, we may also want to compute the posterior summaries for bbb , or for the variance components

themselves (i.e. s2
l
= s2

h
2
l
). Therefore, we must calculate the following:

p(qqq |y) µ p(qqq)p(y |qqq) = p(qqq)
Z

bbb ,sss222
p(y |bbb ,s2,qqq)p(bbb ,s2)dbbb dsss222 (2)

According to Equation 1, the term inside the integral is equal to:

p(y |bbb ,s2,qqq)p(bbb ,s2) = (2ps2)�n/2|V|�1/2 ⇥ exp
⇢
� 1

2s2 (y�Xbbb )|V�1(y�Xbbb )
�

⇥ b
a

G(a)
(2p)p/2(s2)p/2+a+1|YYY|1/2 ⇥ exp

⇢
� 1

s2


b+

1
2
(bbb �µµµ)|YYY�1(bbb �µµµ)

��
.

(3)

where G(•) is the gamma function. Using the following linear algebra identity for arbitrary vectors (ggg,aaa) and square matrix A,:

ggg|Aggg �2aaa|ggg = (ggg �AAA
�1aaa)|A(ggg �A�1aaa)�aaa|A�1aaa,

we can rearrange Equation 3 to be:

p(y |bbb ,s2,qqq)p(bbb ,s2) =C
⇤ ⇥ (s2)�(a+p/2+n/2+1)⇥ exp

⇢
� 1

s2


b
⇤+

1
2
(bbb �µµµ⇤)|YYY⇤�1(bbb �µµµ⇤)

��
, (4)

where we define the terms:

C
⇤ =

b
a

G(a)
(2p)�(n+p)/2|V|�1/2|YYY|�1/2

YYY⇤ = (YYY�1 +X|V�1X)�1

µµµ⇤ = YYY⇤(YYY�1µµµbbb +X|V�1y)

b
⇤ = b+

1
2

h
µµµ|YYY�1µµµ +y|V�1y�µµµ⇤|YYY⇤�1µµµ⇤

i
.

Note that if we assume µµµ = 000, then b
⇤ = b+RSSV,YYY/2, where RSSV,YYY = y|(V�1 �V�1ePV�1)y is the (generalized) residual

sum of squares given V and YYY, with eP = XYYY⇤X|V�1XYYY⇤X|. Equation 4 is the kernel of the NIG(µµµ⇤,YYY⇤,a⇤,b⇤) distribution
with a

⇤ = a+n/2. Therefore, we can evaluate the integral as in Equation 2 as:

Z

bbb ,sss2
p(y |bbb ,s2,qqq)p(bbb ,s2)dbbb dsss2 =

b
a

(2p)(n+p)/2|V|1/2|YYY|1/2G(a)
⇥ (2p)p/2|YYY⇤|1/2G(a⇤)

(b⇤)a⇤ . (5)

In order to evaluate the posterior p(qqq |y), we must calculate the quantity in Equation 5 for each value in qqq with p(qqq)> 0.
Using Grid-LMM, we assume this only occurs at a finite (and generally small) set of values on the L-dimensional simplex. At
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each value, we must calculate the determinant of the n⇥n dimensional matrix V. However, because of the grid, we efficiently
traverse the posterior, reducing the number of evaluations of V�1. All terms on the right hand side of Equation 5 that do not
depend on qqq (or V) cancel out in the posterior and Equation 2 can be written in a simplified form as:

p(qqq |y) =
|Vqqq |�1/2|YYY⇤

qqq |1/2(b⇤q )
�a

⇤
p(qqq)

Â |YYYqqq |�1/2|V⇤
qqq |1/2(b⇤q )

�a⇤ p(qqq)
(6)

where the subscripts are added to denote each term that is a function of qqq . Given this analytical form of p(qqq |y), we can now
calculate Bayes factors (BF) comparing mixed effect models with different terms in X [e.g. 1]. In this case, the term |YYY|1/2 will
differ among models (i.e. with or without the marker of interest), and therefore will not cancel in the BF ratio. However, as
previously shown, if YYY is diagonal, we can still take the limit of the BF as the hyperparameters a,b ! 0 and s2

bbb ! • for the
covariates (but not for the testing marker which is instead a scale parameter that is specified by the user). This choice of prior
distribution class is informative only for the testing SNP, and is otherwise scale-free [1].
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